andrewm@0
|
1 /*
|
andrewm@0
|
2 * render.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Created on: May 28, 2014
|
andrewm@0
|
5 * Author: Victor Zappi
|
andrewm@0
|
6 */
|
andrewm@0
|
7
|
andrewm@0
|
8 #include "../../include/RTAudio.h"
|
andrewm@0
|
9 #include "../../include/PRU.h"
|
andrewm@0
|
10 #include "StatusLED.h"
|
andrewm@0
|
11 #include "config.h"
|
andrewm@0
|
12 #include "OscillatorBank.h"
|
andrewm@0
|
13 #include "FeedbackOscillator.h"
|
andrewm@0
|
14 #include "ADSR.h"
|
andrewm@0
|
15 #include "FIRfilter.h"
|
andrewm@0
|
16 #include <assert.h>
|
andrewm@0
|
17 #include <cmath>
|
andrewm@0
|
18 #include <vector>
|
andrewm@0
|
19
|
andrewm@0
|
20 #undef DBOX_CAPE_TEST
|
andrewm@0
|
21
|
andrewm@48
|
22 // Mappings from pin numbers on PCB to actual DAC channels
|
andrewm@48
|
23 // This gives the DAC and ADC connectors the same effective pinout
|
andrewm@48
|
24 #define DAC_PIN0 6
|
andrewm@48
|
25 #define DAC_PIN1 4
|
andrewm@48
|
26 #define DAC_PIN2 2
|
andrewm@48
|
27 #define DAC_PIN3 0
|
andrewm@48
|
28 #define DAC_PIN4 1
|
andrewm@48
|
29 #define DAC_PIN5 3
|
andrewm@48
|
30 #define DAC_PIN6 5
|
andrewm@48
|
31 #define DAC_PIN7 7
|
andrewm@48
|
32
|
andrewm@48
|
33 #define ADC_PIN0 0
|
andrewm@48
|
34 #define ADC_PIN1 1
|
andrewm@48
|
35 #define ADC_PIN2 2
|
andrewm@48
|
36 #define ADC_PIN3 3
|
andrewm@48
|
37 #define ADC_PIN4 4
|
andrewm@48
|
38 #define ADC_PIN5 5
|
andrewm@48
|
39 #define ADC_PIN6 6
|
andrewm@48
|
40 #define ADC_PIN7 7
|
andrewm@48
|
41
|
andrewm@48
|
42
|
andrewm@0
|
43 #define N_OCT 4.0 // maximum number of octaves on sensor 1
|
andrewm@0
|
44
|
andrewm@0
|
45 extern vector<OscillatorBank*> gOscBanks;
|
andrewm@0
|
46 extern int gCurrentOscBank;
|
andrewm@0
|
47 extern int gNextOscBank;
|
andrewm@0
|
48 extern PRU *gPRU;
|
andrewm@0
|
49 extern StatusLED gStatusLED;
|
andrewm@0
|
50 extern bool gIsLoading;
|
andrewm@0
|
51 extern bool gAudioIn;
|
andrewm@0
|
52 extern int gPeriodSize;
|
andrewm@0
|
53
|
andrewm@0
|
54 float *gOscillatorBuffer1, *gOscillatorBuffer2;
|
andrewm@0
|
55 float *gOscillatorBufferRead, *gOscillatorBufferWrite;
|
andrewm@0
|
56 int gOscillatorBufferReadPointer = 0;
|
andrewm@0
|
57 int gOscillatorBufferReadCurrentSize = 0;
|
andrewm@0
|
58 int gOscillatorBufferWriteCurrentSize = 0;
|
andrewm@0
|
59 bool gOscillatorNeedsRender = false;
|
andrewm@0
|
60
|
andrewm@0
|
61 int gMatrixSampleCount = 0; // How many samples have elapsed on the matrix
|
andrewm@0
|
62
|
andrewm@0
|
63 // Wavetable which changes in response to an oscillator
|
andrewm@0
|
64 float *gDynamicWavetable;
|
andrewm@0
|
65 int gDynamicWavetableLength;
|
andrewm@0
|
66 bool gDynamicWavetableNeedsRender = false;
|
andrewm@0
|
67
|
andrewm@0
|
68 // These variables handle the hysteresis oscillator used for setting the playback speed
|
andrewm@0
|
69 bool gSpeedHysteresisOscillatorRising = false;
|
andrewm@0
|
70 int gSpeedHysteresisLastTrigger = 0;
|
andrewm@0
|
71
|
andrewm@0
|
72 // These variables handle the feedback oscillator used for controlling the wavetable
|
andrewm@0
|
73 FeedbackOscillator gFeedbackOscillator;
|
andrewm@0
|
74 float *gFeedbackOscillatorTable;
|
andrewm@0
|
75 int gFeedbackOscillatorTableLength;
|
andrewm@0
|
76
|
andrewm@0
|
77 // This comes from sensor.cpp where it records the most recent touch location on
|
andrewm@0
|
78 // sensor 0.
|
andrewm@0
|
79 extern float gSensor0LatestTouchPos;
|
andrewm@0
|
80 extern int gSensor0LatestTouchNum;
|
andrewm@0
|
81 uint16_t gPitchLatestInput = 0;
|
andrewm@0
|
82
|
andrewm@0
|
83 extern float gSensor1LatestTouchPos[];
|
andrewm@0
|
84 //extern float gSensor1LatestTouchSizes[];
|
andrewm@0
|
85 extern int gSensor1LatestTouchCount;
|
andrewm@0
|
86 extern int gSensor1LatestTouchIndex;
|
andrewm@0
|
87 int gSensor1LastTouchIndex = -1;
|
andrewm@0
|
88 int gSensor1InputDelayCounter = -1;
|
andrewm@0
|
89 int gSensor1InputIndex = 0;
|
andrewm@0
|
90 float gSensor1MatrixTouchPos[5] = {0};
|
andrewm@0
|
91
|
andrewm@0
|
92 // FSR value from matrix input
|
andrewm@0
|
93 extern int gLastFSRValue;
|
andrewm@0
|
94
|
andrewm@0
|
95 // Loop points from matrix input 4
|
andrewm@0
|
96 const int gLoopPointsInputBufferSize = 256;
|
andrewm@0
|
97 uint16_t gLoopPointsInputBuffer[gLoopPointsInputBufferSize];
|
andrewm@0
|
98 int gLoopPointsInputBufferPointer = 0;
|
andrewm@0
|
99 int gLoopPointMin = 0, gLoopPointMax = 0;
|
andrewm@0
|
100
|
andrewm@0
|
101 // multiplier to activate or mute audio in
|
andrewm@0
|
102 int audioInStatus = 0;
|
andrewm@0
|
103
|
andrewm@0
|
104 // xenomai timer
|
andrewm@0
|
105 SRTIME prevChangeNs = 0;
|
andrewm@0
|
106
|
andrewm@0
|
107 // pitch vars
|
andrewm@0
|
108 float octaveSplitter;
|
andrewm@0
|
109 u_int16_t semitones[((int)N_OCT*12)+1];
|
andrewm@0
|
110 float deltaTouch = 0;
|
andrewm@0
|
111 float deltaWeightP = 0.5;
|
andrewm@0
|
112 float deltaWeightI = 0.0005;
|
andrewm@0
|
113
|
andrewm@0
|
114 // filter vars
|
andrewm@0
|
115 ne10_fir_instance_f32_t filter[2];
|
andrewm@0
|
116 ne10_float32_t *filterIn[2];
|
andrewm@0
|
117 ne10_float32_t *filterOut[2];
|
andrewm@0
|
118 ne10_uint32_t blockSize;
|
andrewm@0
|
119 ne10_float32_t *filterState[2];
|
andrewm@0
|
120 ne10_float32_t prevFiltered[2];
|
andrewm@0
|
121 int filterGain = 80;
|
andrewm@0
|
122 ADSR PeakBurst[2];
|
andrewm@0
|
123 float peak[2];
|
andrewm@0
|
124 float peakThresh = 0.2;
|
andrewm@0
|
125
|
andrewm@0
|
126 // Tasks for lower-priority calculation
|
andrewm@0
|
127 AuxiliaryTask gMediumPriorityRender, gLowPriorityRender;
|
andrewm@0
|
128
|
andrewm@0
|
129
|
andrewm@0
|
130 extern "C" {
|
andrewm@0
|
131 // Function prototype for ARM assembly implementation of oscillator bank
|
andrewm@0
|
132 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
|
andrewm@0
|
133 int activePartialNum, int lookupTableSize,
|
andrewm@0
|
134 float *phases, float *frequencies, float *amplitudes,
|
andrewm@0
|
135 float *freqDerivatives, float *ampDerivatives,
|
andrewm@0
|
136 float *lookupTable);
|
andrewm@0
|
137
|
andrewm@0
|
138 void wavetable_interpolate_neon(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
139 float *tableIn, float *tableOut);
|
andrewm@0
|
140 }
|
andrewm@0
|
141
|
andrewm@0
|
142 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
143 float *tableIn, float *tableOut,
|
andrewm@0
|
144 float *sineTable, float sineMix);
|
andrewm@0
|
145
|
andrewm@0
|
146 inline uint16_t hysteresis_oscillator(uint16_t input, uint16_t risingThreshold,
|
andrewm@0
|
147 uint16_t fallingThreshold, bool *rising);
|
andrewm@0
|
148
|
andrewm@0
|
149 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
150 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
151 uint16_t *matrixIn, uint16_t *matrixOut);
|
andrewm@0
|
152 #endif
|
andrewm@0
|
153
|
andrewm@14
|
154 bool initialise_render(int numMatrixChannels, int numAudioChannels,
|
andrewm@14
|
155 int numMatrixFramesPerPeriod,
|
andrewm@14
|
156 int numAudioFramesPerPeriod,
|
andrewm@14
|
157 float matrixSampleRate, float audioSampleRate,
|
andrewm@14
|
158 void *userData) {
|
andrewm@0
|
159 int oscBankHopSize = *(int *)userData;
|
andrewm@0
|
160
|
andrewm@14
|
161 if(numMatrixChannels != 8) {
|
andrewm@14
|
162 printf("Error: D-Box needs matrix enabled with 8 channels.\n");
|
andrewm@14
|
163 return false;
|
andrewm@14
|
164 }
|
andrewm@14
|
165
|
andrewm@0
|
166 // Allocate two buffers for rendering oscillator bank samples
|
andrewm@0
|
167 // One will be used for writing in the background while the other is used for reading
|
andrewm@0
|
168 // on the audio thread. 8-byte alignment needed for the NEON code.
|
andrewm@14
|
169 if(posix_memalign((void **)&gOscillatorBuffer1, 8, oscBankHopSize * gNumAudioChannels * sizeof(float))) {
|
andrewm@0
|
170 printf("Error allocating render buffers\n");
|
andrewm@0
|
171 return false;
|
andrewm@0
|
172 }
|
andrewm@14
|
173 if(posix_memalign((void **)&gOscillatorBuffer2, 8, oscBankHopSize * gNumAudioChannels * sizeof(float))) {
|
andrewm@0
|
174 printf("Error allocating render buffers\n");
|
andrewm@0
|
175 return false;
|
andrewm@0
|
176 }
|
andrewm@0
|
177 gOscillatorBufferWrite = gOscillatorBuffer1;
|
andrewm@0
|
178 gOscillatorBufferRead = gOscillatorBuffer2;
|
andrewm@0
|
179
|
andrewm@14
|
180 memset(gOscillatorBuffer1, 0, oscBankHopSize * gNumAudioChannels * sizeof(float));
|
andrewm@14
|
181 memset(gOscillatorBuffer2, 0, oscBankHopSize * gNumAudioChannels * sizeof(float));
|
andrewm@0
|
182
|
andrewm@0
|
183 // Initialise the dynamic wavetable used by the oscillator bank
|
andrewm@0
|
184 // It should match the size of the static one already allocated in the OscillatorBank object
|
andrewm@0
|
185 // Don't forget a guard point at the end of the table
|
andrewm@0
|
186 gDynamicWavetableLength = gOscBanks[gCurrentOscBank]->lookupTableSize;
|
andrewm@0
|
187 if(posix_memalign((void **)&gDynamicWavetable, 8, (gDynamicWavetableLength + 1) * sizeof(float))) {
|
andrewm@0
|
188 printf("Error allocating wavetable\n");
|
andrewm@0
|
189 return false;
|
andrewm@0
|
190 }
|
andrewm@0
|
191
|
andrewm@0
|
192 gFeedbackOscillator.initialise(8192, 10.0, matrixSampleRate);
|
andrewm@0
|
193
|
andrewm@0
|
194 for(int n = 0; n < gDynamicWavetableLength + 1; n++)
|
andrewm@0
|
195 gDynamicWavetable[n] = 0;
|
andrewm@0
|
196
|
andrewm@0
|
197 // pitch
|
andrewm@0
|
198 float midPos = (float)65535/2.0;
|
andrewm@0
|
199 octaveSplitter = round((float)65535/(N_OCT));
|
andrewm@0
|
200 int numOfSemi = 12*N_OCT;
|
andrewm@0
|
201 int middleSemitone = 12*N_OCT/2;
|
andrewm@0
|
202 int lastSemitone = middleSemitone+numOfSemi/2;
|
andrewm@0
|
203 float inc = (float)65535/(N_OCT*12.0);
|
andrewm@0
|
204 int i = -1;
|
andrewm@0
|
205 for(int semi=middleSemitone; semi<=lastSemitone; semi++)
|
andrewm@0
|
206 semitones[semi] = ( midPos + (++i)*inc) + 0.5;
|
andrewm@0
|
207 i = 0;
|
andrewm@0
|
208 for(int semi=middleSemitone-1; semi>=0; semi--)
|
andrewm@0
|
209 semitones[semi] = ( midPos - (++i)*inc) + 0.5;
|
andrewm@0
|
210
|
andrewm@0
|
211 if(gAudioIn)
|
andrewm@0
|
212 audioInStatus = 1;
|
andrewm@0
|
213
|
andrewm@0
|
214 // filter
|
andrewm@0
|
215 blockSize = 2*gPeriodSize;
|
andrewm@0
|
216 filterState[0] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
andrewm@0
|
217 filterState[1] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
andrewm@0
|
218 filterIn[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
219 filterIn[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
220 filterOut[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
221 filterOut[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
222 ne10_fir_init_float(&filter[0], FILTER_TAP_NUM, filterTaps, filterState[0], blockSize);
|
andrewm@0
|
223 ne10_fir_init_float(&filter[1], FILTER_TAP_NUM, filterTaps, filterState[1], blockSize);
|
andrewm@0
|
224
|
andrewm@0
|
225 // peak outputs
|
andrewm@0
|
226 PeakBurst[0].setAttackRate(.00001 * matrixSampleRate);
|
andrewm@0
|
227 PeakBurst[1].setAttackRate(.00001 * matrixSampleRate);
|
andrewm@0
|
228 PeakBurst[0].setDecayRate(.5 * matrixSampleRate);
|
andrewm@0
|
229 PeakBurst[1].setDecayRate(.5 * matrixSampleRate);
|
andrewm@0
|
230 PeakBurst[0].setSustainLevel(0.0);
|
andrewm@0
|
231 PeakBurst[1].setSustainLevel(0.0);
|
andrewm@0
|
232
|
andrewm@0
|
233 // Initialise auxiliary tasks
|
andrewm@0
|
234 if((gMediumPriorityRender = createAuxiliaryTaskLoop(&render_medium_prio, 90, "dbox-calculation-medium")) == 0)
|
andrewm@0
|
235 return false;
|
andrewm@0
|
236 if((gLowPriorityRender = createAuxiliaryTaskLoop(&render_low_prio, 85, "dbox-calculation-low")) == 0)
|
andrewm@0
|
237 return false;
|
andrewm@0
|
238
|
andrewm@0
|
239 return true;
|
andrewm@0
|
240 }
|
andrewm@0
|
241
|
andrewm@0
|
242 void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
243 uint16_t *matrixIn, uint16_t *matrixOut)
|
andrewm@0
|
244 {
|
andrewm@0
|
245 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
246 render_capetest(numMatrixFrames, numAudioFrames, audioIn, audioOut, matrixIn, matrixOut);
|
andrewm@0
|
247 #else
|
andrewm@0
|
248 if(gOscBanks[gCurrentOscBank]->state==bank_toreset)
|
andrewm@0
|
249 gOscBanks[gCurrentOscBank]->resetOscillators();
|
andrewm@0
|
250
|
andrewm@0
|
251 if(gOscBanks[gCurrentOscBank]->state==bank_playing)
|
andrewm@0
|
252 {
|
andrewm@14
|
253 assert(gNumAudioChannels == 2);
|
andrewm@0
|
254
|
andrewm@0
|
255 #ifdef OLD_OSCBANK
|
andrewm@14
|
256 memset(audioOut, 0, numAudioFrames * gNumAudioChannels * sizeof(float));
|
andrewm@0
|
257
|
andrewm@0
|
258 /* Render the oscillator bank. The oscillator bank function is written in NEON assembly
|
andrewm@0
|
259 * and it strips out all extra checks, so find out in advance whether we can render a whole
|
andrewm@0
|
260 * block or whether the frame will increment in the middle of this buffer.
|
andrewm@0
|
261 */
|
andrewm@0
|
262
|
andrewm@0
|
263 int framesRemaining = numAudioFrames;
|
andrewm@0
|
264 float *audioOutWithOffset = audioOut;
|
andrewm@0
|
265
|
andrewm@0
|
266 while(framesRemaining > 0) {
|
andrewm@0
|
267 if(gOscBanks[gCurrentOscBank]->hopCounter >= framesRemaining) {
|
andrewm@0
|
268 /* More frames left in this hop than we need this time. Render and finish */
|
andrewm@0
|
269 oscillator_bank_neon(framesRemaining, audioOutWithOffset,
|
andrewm@0
|
270 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
271 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
272 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
273 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
274 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
275 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
andrewm@0
|
276 gOscBanks[gCurrentOscBank]->hopCounter -= framesRemaining;
|
andrewm@0
|
277 if(gOscBanks[gCurrentOscBank]->hopCounter <= 0)
|
andrewm@0
|
278 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
279 framesRemaining = 0;
|
andrewm@0
|
280 }
|
andrewm@0
|
281 else {
|
andrewm@0
|
282 /* More frames to render than are left in this hop. Render and decrement the
|
andrewm@0
|
283 * number of remaining frames; then advance to the next oscillator frame.
|
andrewm@0
|
284 */
|
andrewm@0
|
285 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, audioOutWithOffset,
|
andrewm@0
|
286 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
287 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
288 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
289 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
290 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
291 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
andrewm@0
|
292 framesRemaining -= gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@14
|
293 audioOutWithOffset += gNumAudioChannels * gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
294 gOscBanks[gCurrentOscBank]->sampleCount += gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
295 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
296 }
|
andrewm@0
|
297 }
|
andrewm@0
|
298 #else
|
andrewm@0
|
299 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
300 audioOut[2*n] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+audioIn[2*n]*audioInStatus;
|
andrewm@0
|
301 audioOut[2*n + 1] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+audioIn[2*n+1]*audioInStatus;
|
andrewm@0
|
302
|
andrewm@0
|
303 filterIn[0][n] = fabs(audioIn[2*n]); // rectify for peak detection in 1
|
andrewm@0
|
304 filterIn[1][n] = fabs(audioIn[2*n+1]); // rectify for peak detection in 2
|
andrewm@0
|
305
|
andrewm@0
|
306 /* FIXME why doesn't this work? */
|
andrewm@0
|
307 /*
|
andrewm@0
|
308 if(gOscillatorBufferReadPointer == gOscillatorBufferCurrentSize/2) {
|
andrewm@0
|
309 gOscillatorNeedsRender = true;
|
andrewm@0
|
310 scheduleAuxiliaryTask(gLowPriorityRender);
|
andrewm@0
|
311 } */
|
andrewm@0
|
312
|
andrewm@0
|
313 if(gOscillatorBufferReadPointer >= gOscillatorBufferReadCurrentSize) {
|
andrewm@0
|
314 // Finished reading from the buffer: swap to the next buffer
|
andrewm@0
|
315 if(gOscillatorBufferRead == gOscillatorBuffer1) {
|
andrewm@0
|
316 gOscillatorBufferRead = gOscillatorBuffer2;
|
andrewm@0
|
317 gOscillatorBufferWrite = gOscillatorBuffer1;
|
andrewm@0
|
318 }
|
andrewm@0
|
319 else {
|
andrewm@0
|
320 gOscillatorBufferRead = gOscillatorBuffer1;
|
andrewm@0
|
321 gOscillatorBufferWrite = gOscillatorBuffer2;
|
andrewm@0
|
322 }
|
andrewm@0
|
323
|
andrewm@0
|
324 // New buffer size is whatever finished writing last hop
|
andrewm@0
|
325 gOscillatorBufferReadCurrentSize = gOscillatorBufferWriteCurrentSize;
|
andrewm@0
|
326 gOscillatorBufferReadPointer = 0;
|
andrewm@0
|
327
|
andrewm@0
|
328 gOscillatorNeedsRender = true;
|
andrewm@0
|
329 scheduleAuxiliaryTask(gMediumPriorityRender);
|
andrewm@0
|
330 }
|
andrewm@0
|
331 }
|
andrewm@0
|
332 #endif
|
andrewm@0
|
333 }
|
andrewm@0
|
334 else
|
andrewm@0
|
335 {
|
andrewm@0
|
336 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
337 audioOut[2*n] = audioIn[2*n]*audioInStatus;
|
andrewm@0
|
338 audioOut[2*n + 1] = audioIn[2*n+1]*audioInStatus;
|
andrewm@0
|
339
|
andrewm@0
|
340 filterIn[0][n] = fabs(audioIn[2*n]); // rectify for peak detection in 1
|
andrewm@0
|
341 filterIn[1][n] = fabs(audioIn[2*n+1]); // rectify for peak detection in 2
|
andrewm@0
|
342 }
|
andrewm@0
|
343 }
|
andrewm@0
|
344
|
andrewm@0
|
345 // low pass filter audio in 1 and 2 for peak detection
|
andrewm@0
|
346 ne10_fir_float_neon(&filter[0], filterIn[0], filterOut[0], blockSize);
|
andrewm@0
|
347 ne10_fir_float_neon(&filter[1], filterIn[1], filterOut[1], blockSize);
|
andrewm@0
|
348
|
andrewm@0
|
349 for(int n = 0; n < numMatrixFrames; n++) {
|
andrewm@0
|
350
|
andrewm@0
|
351
|
andrewm@0
|
352 /* Matrix Out 0, In 0
|
andrewm@0
|
353 *
|
andrewm@0
|
354 * CV loop
|
andrewm@0
|
355 * Controls pitch of sound
|
andrewm@0
|
356 */
|
andrewm@0
|
357 int touchPosInt = gSensor0LatestTouchPos * 65536.0;
|
andrewm@0
|
358 if(touchPosInt < 0) touchPosInt = 0;
|
andrewm@0
|
359 if(touchPosInt > 65535) touchPosInt = 65535;
|
andrewm@0
|
360 matrixOut[n*8 + DAC_PIN0] = touchPosInt;
|
andrewm@0
|
361
|
andrewm@0
|
362 gPitchLatestInput = matrixIn[n*8 + ADC_PIN0];
|
andrewm@0
|
363
|
andrewm@0
|
364
|
andrewm@0
|
365 /* Matrix Out 7
|
andrewm@0
|
366 *
|
andrewm@0
|
367 * Loop feedback with Matrix In 0
|
andrewm@0
|
368 * Controls discreet pitch
|
andrewm@0
|
369 */
|
andrewm@0
|
370 float deltaTarget = 0;
|
andrewm@0
|
371 int semitoneIndex = 0;
|
andrewm@0
|
372 if(gSensor0LatestTouchNum>0)
|
andrewm@0
|
373 {
|
andrewm@0
|
374 // current pitch is gPitchLatestInput, already retrieved
|
andrewm@0
|
375 semitoneIndex = ( ( (float)gPitchLatestInput / 65535)*12*N_OCT )+0.5; // closest semitone
|
andrewm@0
|
376 deltaTarget = (semitones[semitoneIndex]-gPitchLatestInput); // delta between pitch and target
|
andrewm@0
|
377 deltaTouch += deltaTarget*deltaWeightI; // update feedback [previous + current]
|
andrewm@0
|
378 }
|
andrewm@0
|
379 else
|
andrewm@0
|
380 deltaTouch = 0;
|
andrewm@0
|
381
|
andrewm@0
|
382 int nextOut = touchPosInt + deltaTarget*deltaWeightP + deltaTouch; // add feedback to touch -> next out
|
andrewm@0
|
383 if(nextOut < 0) nextOut = 0; // clamp
|
andrewm@0
|
384 if(nextOut > 65535) nextOut = 65535; // clamp
|
andrewm@0
|
385 matrixOut[n*8 + DAC_PIN7] = nextOut; // send next nextOut
|
andrewm@0
|
386
|
andrewm@0
|
387
|
andrewm@0
|
388 /*
|
andrewm@0
|
389 * Matrix Out 1, In 1
|
andrewm@0
|
390 *
|
andrewm@0
|
391 * Hysteresis (comparator) oscillator
|
andrewm@0
|
392 * Controls speed of playback
|
andrewm@0
|
393 */
|
andrewm@0
|
394 bool wasRising = gSpeedHysteresisOscillatorRising;
|
andrewm@0
|
395 matrixOut[n*8 + DAC_PIN1] = hysteresis_oscillator(matrixIn[n*8 + ADC_PIN1], 48000, 16000, &gSpeedHysteresisOscillatorRising);
|
andrewm@0
|
396
|
andrewm@0
|
397 // Find interval of zero crossing
|
andrewm@0
|
398 if(wasRising && !gSpeedHysteresisOscillatorRising) {
|
andrewm@0
|
399 int interval = gMatrixSampleCount - gSpeedHysteresisLastTrigger;
|
andrewm@0
|
400
|
andrewm@0
|
401 // Interval since last trigger will be the new hop size; calculate to set speed
|
andrewm@0
|
402 if(interval < 1)
|
andrewm@0
|
403 interval = 1;
|
andrewm@0
|
404 //float speed = (float)gOscBanks[gCurrentOscBank]->getHopSize() / (float)interval;
|
andrewm@0
|
405 float speed = 144.0 / interval; // Normalise to a fixed expected speed
|
andrewm@0
|
406 gOscBanks[gCurrentOscBank]->setSpeed(speed);
|
andrewm@0
|
407
|
andrewm@0
|
408 gSpeedHysteresisLastTrigger = gMatrixSampleCount;
|
andrewm@0
|
409 }
|
andrewm@0
|
410
|
andrewm@0
|
411 /*
|
andrewm@0
|
412 * Matrix Out 2, In 2
|
andrewm@0
|
413 *
|
andrewm@0
|
414 * Feedback (phase shift) oscillator
|
andrewm@0
|
415 * Controls wavetable used for oscillator bank
|
andrewm@0
|
416 */
|
andrewm@0
|
417
|
andrewm@0
|
418 int tableLength = gFeedbackOscillator.process(matrixIn[n*8 + ADC_PIN2], &matrixOut[n*8 + DAC_PIN2]);
|
andrewm@0
|
419 if(tableLength != 0) {
|
andrewm@0
|
420 gFeedbackOscillatorTableLength = tableLength;
|
andrewm@0
|
421 gFeedbackOscillatorTable = gFeedbackOscillator.wavetable();
|
andrewm@0
|
422 gDynamicWavetableNeedsRender = true;
|
andrewm@0
|
423 scheduleAuxiliaryTask(gLowPriorityRender);
|
andrewm@0
|
424 }
|
andrewm@0
|
425
|
andrewm@0
|
426 /*
|
andrewm@0
|
427 * Matrix Out 3, In 3
|
andrewm@0
|
428 *
|
andrewm@0
|
429 * CV loop with delay for time alignment
|
andrewm@0
|
430 * Touch positions from sensor 1
|
andrewm@0
|
431 * Change every 32 samples (ca. 1.5 ms)
|
andrewm@0
|
432 */
|
andrewm@0
|
433 volatile int touchCount = gSensor1LatestTouchCount;
|
andrewm@0
|
434 if(touchCount == 0)
|
andrewm@0
|
435 matrixOut[n*8 + DAC_PIN3] = 0;
|
andrewm@0
|
436 else {
|
andrewm@0
|
437 int touchIndex = (gMatrixSampleCount >> 5) % touchCount;
|
andrewm@0
|
438 matrixOut[n*8 + DAC_PIN3] = gSensor1LatestTouchPos[touchIndex] * 56000.0f;
|
andrewm@0
|
439 if(touchIndex != gSensor1LastTouchIndex) {
|
andrewm@0
|
440 // Just changed to a new touch output. Reset the counter.
|
andrewm@0
|
441 // It will take 2*matrixFrames samples for this output to come back to the
|
andrewm@0
|
442 // ADC input. But we also want to read near the end of the 32 sample block;
|
andrewm@0
|
443 // let's say 24 samples into it.
|
andrewm@0
|
444
|
andrewm@0
|
445 // FIXME this won't work for p > 2
|
andrewm@0
|
446 gSensor1InputDelayCounter = 24 + 2*numMatrixFrames;
|
andrewm@0
|
447 gSensor1InputIndex = touchIndex;
|
andrewm@0
|
448 }
|
andrewm@0
|
449 gSensor1LastTouchIndex = touchIndex;
|
andrewm@0
|
450 }
|
andrewm@0
|
451
|
andrewm@0
|
452 if(gSensor1InputDelayCounter-- >= 0 && touchCount > 0) {
|
andrewm@0
|
453 gSensor1MatrixTouchPos[gSensor1InputIndex] = (float)matrixIn[n*8 + ADC_PIN3] / 65536.0f;
|
andrewm@0
|
454 }
|
andrewm@0
|
455
|
andrewm@0
|
456 /* Matrix Out 4
|
andrewm@0
|
457 *
|
andrewm@0
|
458 * Sensor 1 last pos
|
andrewm@0
|
459 */
|
andrewm@0
|
460 touchPosInt = gSensor1LatestTouchPos[gSensor1LatestTouchIndex] * 65536.0;
|
andrewm@0
|
461 if(touchPosInt < 0) touchPosInt = 0;
|
andrewm@0
|
462 if(touchPosInt > 65535) touchPosInt = 65535;
|
andrewm@0
|
463 matrixOut[n*8 + DAC_PIN4] = touchPosInt;
|
andrewm@0
|
464
|
andrewm@0
|
465 /* Matrix In 4
|
andrewm@0
|
466 *
|
andrewm@0
|
467 * Loop points selector
|
andrewm@0
|
468 */
|
andrewm@0
|
469 gLoopPointsInputBuffer[gLoopPointsInputBufferPointer++] = matrixIn[n*8 + ADC_PIN4];
|
andrewm@0
|
470 if(gLoopPointsInputBufferPointer >= gLoopPointsInputBufferSize) {
|
andrewm@0
|
471 // Find min and max values
|
andrewm@0
|
472 uint16_t loopMax = 0, loopMin = 65535;
|
andrewm@0
|
473 for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
andrewm@0
|
474 if(gLoopPointsInputBuffer[i] < loopMin)
|
andrewm@0
|
475 loopMin = gLoopPointsInputBuffer[i];
|
andrewm@0
|
476 if(gLoopPointsInputBuffer[i] > loopMax/* && gLoopPointsInputBuffer[i] != 65535*/)
|
andrewm@0
|
477 loopMax = gLoopPointsInputBuffer[i];
|
andrewm@0
|
478 }
|
andrewm@0
|
479
|
andrewm@0
|
480 if(loopMin >= loopMax)
|
andrewm@0
|
481 loopMax = loopMin;
|
andrewm@0
|
482
|
andrewm@0
|
483 gLoopPointMax = loopMax;
|
andrewm@0
|
484 gLoopPointMin = loopMin;
|
andrewm@0
|
485 gLoopPointsInputBufferPointer = 0;
|
andrewm@0
|
486 }
|
andrewm@0
|
487
|
andrewm@0
|
488 /* Matrix Out 5
|
andrewm@0
|
489 *
|
andrewm@0
|
490 * Audio In 1 peak detection and peak burst output
|
andrewm@0
|
491 */
|
andrewm@0
|
492
|
andrewm@0
|
493 filterOut[0][n*2+1] *= filterGain;
|
andrewm@0
|
494 float burstOut = PeakBurst[0].getOutput();
|
andrewm@0
|
495 if( burstOut < 0.1)
|
andrewm@0
|
496 {
|
andrewm@0
|
497 if( (prevFiltered[0]>=peakThresh) && (prevFiltered[0]>=filterOut[0][n*2+1]) )
|
andrewm@0
|
498 {
|
andrewm@0
|
499 peak[0] = prevFiltered[0];
|
andrewm@0
|
500 PeakBurst[0].gate(1);
|
andrewm@0
|
501 }
|
andrewm@0
|
502 }
|
andrewm@0
|
503
|
andrewm@0
|
504 PeakBurst[0].process(1);
|
andrewm@0
|
505
|
andrewm@0
|
506 int convAudio = burstOut*peak[0]*65535;
|
andrewm@0
|
507 matrixOut[n*8 + DAC_PIN5] = convAudio;
|
andrewm@0
|
508 prevFiltered[0] = filterOut[0][n*2+1];
|
andrewm@0
|
509 if(prevFiltered[0]>1)
|
andrewm@0
|
510 prevFiltered[0] = 1;
|
andrewm@0
|
511
|
andrewm@0
|
512 /* Matrix In 5
|
andrewm@0
|
513 *
|
andrewm@0
|
514 * Dissonance, via changing frequency motion of partials
|
andrewm@0
|
515 */
|
andrewm@0
|
516 float amount = (float)matrixIn[n*8 + ADC_PIN5] / 65536.0f;
|
andrewm@0
|
517 gOscBanks[gCurrentOscBank]->freqMovement = 1-amount;
|
andrewm@0
|
518
|
andrewm@0
|
519
|
andrewm@0
|
520
|
andrewm@0
|
521
|
andrewm@0
|
522 /* Matrix Out 6
|
andrewm@0
|
523 *
|
andrewm@0
|
524 * Audio In 2 peak detection and peak burst output
|
andrewm@0
|
525 */
|
andrewm@0
|
526
|
andrewm@0
|
527 filterOut[1][n*2+1] *= filterGain;
|
andrewm@0
|
528 burstOut = PeakBurst[1].getOutput();
|
andrewm@0
|
529 if( burstOut < 0.1)
|
andrewm@0
|
530 {
|
andrewm@0
|
531 if( (prevFiltered[1]>=peakThresh) && (prevFiltered[1]>=filterOut[1][n*2+1]) )
|
andrewm@0
|
532 {
|
andrewm@0
|
533 peak[1] = prevFiltered[1];
|
andrewm@0
|
534 PeakBurst[1].gate(1);
|
andrewm@0
|
535 }
|
andrewm@0
|
536 }
|
andrewm@0
|
537
|
andrewm@0
|
538 PeakBurst[1].process(1);
|
andrewm@0
|
539
|
andrewm@0
|
540 convAudio = burstOut*peak[1]*65535;
|
andrewm@0
|
541 matrixOut[n*8 + DAC_PIN6] = convAudio;
|
andrewm@0
|
542 prevFiltered[1] = filterOut[1][n*2+1];
|
andrewm@0
|
543 if(prevFiltered[1]>1)
|
andrewm@0
|
544 prevFiltered[1] = 1;
|
andrewm@0
|
545
|
andrewm@0
|
546 /* Matrix In 6
|
andrewm@0
|
547 *
|
andrewm@0
|
548 * Sound selector
|
andrewm@0
|
549 */
|
andrewm@0
|
550 if(!gIsLoading) {
|
andrewm@0
|
551 // Use hysteresis to avoid jumping back and forth between sounds
|
andrewm@0
|
552 if(gOscBanks.size() > 1) {
|
andrewm@0
|
553 int input = matrixIn[n*8 + ADC_PIN6];
|
andrewm@0
|
554 const int hystValue = 16000;
|
andrewm@0
|
555
|
andrewm@0
|
556 int upHysteresisValue = ((gCurrentOscBank + 1) * 65536 + hystValue) / gOscBanks.size();
|
andrewm@0
|
557 int downHysteresisValue = (gCurrentOscBank * 65536 - hystValue) / gOscBanks.size();
|
andrewm@0
|
558
|
andrewm@0
|
559 if(input > upHysteresisValue || input < downHysteresisValue) {
|
andrewm@0
|
560 gNextOscBank = input * gOscBanks.size() / 65536;
|
andrewm@0
|
561 if(gNextOscBank < 0)
|
andrewm@0
|
562 gNextOscBank = 0;
|
andrewm@0
|
563 if((unsigned)gNextOscBank >= gOscBanks.size())
|
andrewm@0
|
564 gNextOscBank = gOscBanks.size() - 1;
|
andrewm@0
|
565 }
|
andrewm@0
|
566 }
|
andrewm@0
|
567 }
|
andrewm@0
|
568
|
andrewm@0
|
569 /*
|
andrewm@0
|
570 * Matrix In 7
|
andrewm@0
|
571 *
|
andrewm@0
|
572 * FSR from primary touch sensor
|
andrewm@0
|
573 * Value ranges from 0-1799
|
andrewm@0
|
574 */
|
andrewm@0
|
575 gLastFSRValue = matrixIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
|
andrewm@0
|
576 //gLastFSRValue = 1799 - matrixIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
|
andrewm@0
|
577 //dbox_printf("%i\n",gLastFSRValue);
|
andrewm@0
|
578
|
andrewm@0
|
579 gMatrixSampleCount++;
|
andrewm@0
|
580 }
|
andrewm@0
|
581
|
andrewm@0
|
582 #endif /* DBOX_CAPE_TEST */
|
andrewm@0
|
583 }
|
andrewm@0
|
584
|
andrewm@0
|
585 // Medium-priority render function used for audio hop calculations
|
andrewm@0
|
586 void render_medium_prio()
|
andrewm@0
|
587 {
|
andrewm@0
|
588
|
andrewm@0
|
589 if(gOscillatorNeedsRender) {
|
andrewm@0
|
590 gOscillatorNeedsRender = false;
|
andrewm@0
|
591
|
andrewm@0
|
592 /* Render one frame into the write buffer */
|
andrewm@14
|
593 memset(gOscillatorBufferWrite, 0, gOscBanks[gCurrentOscBank]->hopCounter * gNumAudioChannels * sizeof(float));
|
andrewm@0
|
594
|
andrewm@0
|
595 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, gOscillatorBufferWrite,
|
andrewm@0
|
596 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
597 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
598 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
599 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
600 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
601 /*gOscBanks[gCurrentOscBank]->lookupTable*/gDynamicWavetable);
|
andrewm@0
|
602
|
andrewm@14
|
603 gOscillatorBufferWriteCurrentSize = gOscBanks[gCurrentOscBank]->hopCounter * gNumAudioChannels;
|
andrewm@0
|
604
|
andrewm@0
|
605 /* Update the pitch right before the hop
|
andrewm@0
|
606 * Total CV range +/- N_OCT octaves
|
andrewm@0
|
607 */
|
andrewm@0
|
608 float pitch = (float)gPitchLatestInput / octaveSplitter - N_OCT/2;
|
andrewm@0
|
609 //gOscBanks[gCurrentOscBank]->pitchMultiplier = powf(2.0f, pitch);
|
andrewm@0
|
610 gOscBanks[gCurrentOscBank]->pitchMultiplier = pow(2.0f, pitch);
|
andrewm@0
|
611
|
andrewm@0
|
612 #ifdef FIXME_LATER // This doesn't work very well yet
|
andrewm@0
|
613 gOscBanks[gCurrentOscBank]->filterNum = gSensor1LatestTouchCount;
|
andrewm@0
|
614 float freqScaler = gOscBanks[gCurrentOscBank]->getFrequencyScaler();
|
andrewm@0
|
615 for(int i=0; i < gOscBanks[gCurrentOscBank]->filterNum; i++)
|
andrewm@0
|
616 {
|
andrewm@0
|
617 // touch pos is linear but freqs are log
|
andrewm@0
|
618 gOscBanks[gCurrentOscBank]->filterFreqs[i] = ((expf(gSensor1MatrixTouchPos[i]*4)-1)/(expf(4)-1))*gOscBanks[gCurrentOscBank]->filterMaxF*freqScaler;
|
andrewm@0
|
619 gOscBanks[gCurrentOscBank]->filterQ[i] = gSensor1LatestTouchSizes[i];
|
andrewm@0
|
620 if(gOscBanks[gCurrentOscBank]->filterFreqs[i]>500*freqScaler)
|
andrewm@0
|
621 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1+100000*( (gOscBanks[gCurrentOscBank]->filterFreqs[i]-500*freqScaler)/(gOscBanks[gCurrentOscBank]->filterMaxF-500)*freqScaler );
|
andrewm@0
|
622 else
|
andrewm@0
|
623 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1;
|
andrewm@0
|
624 }
|
andrewm@0
|
625 #endif
|
andrewm@0
|
626
|
andrewm@0
|
627 RTIME ticks = rt_timer_read();
|
andrewm@0
|
628 SRTIME ns = rt_timer_tsc2ns(ticks);
|
andrewm@0
|
629 SRTIME delta = ns-prevChangeNs;
|
andrewm@0
|
630
|
andrewm@0
|
631 // switch to next bank cannot be too frequent, to avoid seg fault! [for example sef fault happens when removing both VDD and GND from breadboard]
|
andrewm@0
|
632 if(gNextOscBank != gCurrentOscBank && delta>100000000) {
|
andrewm@0
|
633
|
andrewm@0
|
634 /*printf("ticks %llu\n", (unsigned long long)ticks);
|
andrewm@0
|
635 printf("ns %llu\n", (unsigned long long)ns);
|
andrewm@0
|
636 printf("prevChangeNs %llu\n", (unsigned long long)prevChangeNs);
|
andrewm@0
|
637 printf("-------------------------->%llud\n", (unsigned long long)(ns-prevChangeNs));*/
|
andrewm@0
|
638
|
andrewm@0
|
639 prevChangeNs = ns;
|
andrewm@0
|
640 dbox_printf("Changing to bank %d...\n", gNextOscBank);
|
andrewm@0
|
641 if(gOscBanks[gCurrentOscBank]->state==bank_playing){
|
andrewm@0
|
642 gOscBanks[gCurrentOscBank]->stop();
|
andrewm@0
|
643 }
|
andrewm@0
|
644
|
andrewm@0
|
645 gCurrentOscBank = gNextOscBank;
|
andrewm@0
|
646 gOscBanks[gCurrentOscBank]->hopNumTh = 0;
|
andrewm@0
|
647 }
|
andrewm@0
|
648 else {
|
andrewm@0
|
649 /* Advance to the next oscillator frame */
|
andrewm@0
|
650 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
651 }
|
andrewm@0
|
652 }
|
andrewm@0
|
653 }
|
andrewm@0
|
654
|
andrewm@0
|
655 // Lower-priority render function which performs matrix calculations
|
andrewm@0
|
656 // State should be transferred in via global variables
|
andrewm@0
|
657 void render_low_prio()
|
andrewm@0
|
658 {
|
andrewm@0
|
659 gPRU->setGPIOTestPin();
|
andrewm@0
|
660 if(gDynamicWavetableNeedsRender) {
|
andrewm@0
|
661 // Find amplitude of wavetable
|
andrewm@0
|
662 float meanAmplitude = 0;
|
andrewm@0
|
663 float sineMix;
|
andrewm@0
|
664
|
andrewm@0
|
665 for(int i = 0; i < gFeedbackOscillatorTableLength; i++) {
|
andrewm@0
|
666 //meanAmplitude += fabsf(gFeedbackOscillatorTable[i]);
|
andrewm@0
|
667 meanAmplitude += fabs(gFeedbackOscillatorTable[i]);
|
andrewm@0
|
668 }
|
andrewm@0
|
669 meanAmplitude /= (float)gFeedbackOscillatorTableLength;
|
andrewm@0
|
670
|
andrewm@0
|
671 if(meanAmplitude > 0.35)
|
andrewm@0
|
672 sineMix = 0;
|
andrewm@0
|
673 else
|
andrewm@0
|
674 sineMix = (.35 - meanAmplitude) / .35;
|
andrewm@0
|
675
|
andrewm@0
|
676 //dbox_printf("amp %f mix %f\n", meanAmplitude, sineMix);
|
andrewm@0
|
677
|
andrewm@0
|
678 // Copy to main wavetable
|
andrewm@0
|
679 wavetable_interpolate(gFeedbackOscillatorTableLength, gDynamicWavetableLength,
|
andrewm@0
|
680 gFeedbackOscillatorTable, gDynamicWavetable,
|
andrewm@0
|
681 gOscBanks[gCurrentOscBank]->lookupTable, sineMix);
|
andrewm@0
|
682 }
|
andrewm@0
|
683
|
andrewm@0
|
684 if(gLoopPointMin >= 60000 && gLoopPointMax >= 60000) {
|
andrewm@0
|
685 // KLUDGE!
|
andrewm@0
|
686 if(gCurrentOscBank == 0)
|
andrewm@0
|
687 gOscBanks[gCurrentOscBank]->setLoopHops(50, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.6) - 1);
|
andrewm@0
|
688 else
|
andrewm@0
|
689 gOscBanks[gCurrentOscBank]->setLoopHops(5, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.7) - 1);
|
andrewm@0
|
690 }
|
andrewm@0
|
691 else {
|
andrewm@0
|
692 float normLoopPointMin = (float)gLoopPointMin * gOscBanks[gCurrentOscBank]->getLastHop() / 65535.0;
|
andrewm@0
|
693 float normLoopPointMax = (float)gLoopPointMax * gOscBanks[gCurrentOscBank]->getLastHop() / 65535.0;
|
andrewm@0
|
694
|
andrewm@0
|
695 int intLoopPointMin = normLoopPointMin;
|
andrewm@0
|
696 if(intLoopPointMin < 1)
|
andrewm@0
|
697 intLoopPointMin = 1;
|
andrewm@0
|
698 int intLoopPointMax = normLoopPointMax;
|
andrewm@0
|
699 if(intLoopPointMax <= intLoopPointMin)
|
andrewm@0
|
700 intLoopPointMax = intLoopPointMin + 1;
|
andrewm@0
|
701 if(intLoopPointMax > gOscBanks[gCurrentOscBank]->getLastHop() - 1)
|
andrewm@0
|
702 intLoopPointMax = gOscBanks[gCurrentOscBank]->getLastHop() - 1;
|
andrewm@0
|
703
|
andrewm@0
|
704 //dbox_printf("Loop points %d-%d / %d-%d\n", gLoopPointMin, gLoopPointMax, intLoopPointMin, intLoopPointMax);
|
andrewm@0
|
705
|
andrewm@0
|
706 /* WORKS, jsut need to fix the glitch when jumps!
|
andrewm@0
|
707 * *int currentHop = gOscBanks[gCurrentOscBank]->getCurrentHop();
|
andrewm@0
|
708 if(currentHop < intLoopPointMin -1 )
|
andrewm@0
|
709 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMin + 1);
|
andrewm@0
|
710 else if(currentHop > intLoopPointMax + 1)
|
andrewm@0
|
711 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMax - 1);*/
|
andrewm@0
|
712 gOscBanks[gCurrentOscBank]->setLoopHops(intLoopPointMin, intLoopPointMax);
|
andrewm@0
|
713 }
|
andrewm@0
|
714
|
andrewm@0
|
715 if(gIsLoading)
|
andrewm@0
|
716 gStatusLED.blink(25, 75); // Blink quickly until load finished
|
andrewm@0
|
717 else
|
andrewm@0
|
718 gStatusLED.blink(250 / gOscBanks[gCurrentOscBank]->getSpeed(), 250 / gOscBanks[gCurrentOscBank]->getSpeed());
|
andrewm@0
|
719 gPRU->clearGPIOTestPin();
|
andrewm@0
|
720
|
andrewm@0
|
721 // static int counter = 32;
|
andrewm@0
|
722 // if(--counter == 0) {
|
andrewm@0
|
723 // for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
andrewm@0
|
724 // dbox_printf("%d ", gLoopPointsInputBuffer[i]);
|
andrewm@0
|
725 // if(i % 32 == 31)
|
andrewm@0
|
726 // dbox_printf("\n");
|
andrewm@0
|
727 // }
|
andrewm@0
|
728 // dbox_printf("\n\n");
|
andrewm@0
|
729 // counter = 32;
|
andrewm@0
|
730 // }
|
andrewm@0
|
731
|
andrewm@0
|
732 //dbox_printf("min %d max %d\n", gLoopPointMin, gLoopPointMax);
|
andrewm@0
|
733 }
|
andrewm@0
|
734
|
andrewm@0
|
735 // Clean up at the end of render
|
andrewm@0
|
736 void cleanup_render()
|
andrewm@0
|
737 {
|
andrewm@0
|
738 free(gOscillatorBuffer1);
|
andrewm@0
|
739 free(gOscillatorBuffer2);
|
andrewm@0
|
740 free(gDynamicWavetable);
|
andrewm@0
|
741 }
|
andrewm@0
|
742
|
andrewm@0
|
743 // Interpolate one wavetable into another. The output size
|
andrewm@0
|
744 // does not include the guard point at the end which will be identical
|
andrewm@0
|
745 // to the first point
|
andrewm@0
|
746 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
747 float *tableIn, float *tableOut,
|
andrewm@0
|
748 float *sineTable, float sineMix)
|
andrewm@0
|
749 {
|
andrewm@0
|
750 float fractionalScaler = (float)numSamplesIn / (float)numSamplesOut;
|
andrewm@0
|
751
|
andrewm@0
|
752 for(int k = 0; k < numSamplesOut; k++) {
|
andrewm@0
|
753 float fractionalIndex = (float) k * fractionalScaler;
|
andrewm@0
|
754 //int sB = (int)floorf(fractionalIndex);
|
andrewm@0
|
755 int sB = (int)floor(fractionalIndex);
|
andrewm@0
|
756 int sA = sB + 1;
|
andrewm@0
|
757 if(sA >= numSamplesIn)
|
andrewm@0
|
758 sA = 0;
|
andrewm@0
|
759 float fraction = fractionalIndex - sB;
|
andrewm@0
|
760 tableOut[k] = fraction * tableIn[sA] + (1.0f - fraction) * tableIn[sB];
|
andrewm@0
|
761 tableOut[k] = sineMix * sineTable[k] + (1.0 - sineMix) * tableOut[k];
|
andrewm@0
|
762 }
|
andrewm@0
|
763
|
andrewm@0
|
764 tableOut[numSamplesOut] = tableOut[0];
|
andrewm@0
|
765 }
|
andrewm@0
|
766
|
andrewm@0
|
767 // Create a hysteresis oscillator with a matrix input and output
|
andrewm@0
|
768 inline uint16_t hysteresis_oscillator(uint16_t input, uint16_t risingThreshold, uint16_t fallingThreshold, bool *rising)
|
andrewm@0
|
769 {
|
andrewm@0
|
770 uint16_t value;
|
andrewm@0
|
771
|
andrewm@0
|
772 if(*rising) {
|
andrewm@0
|
773 if(input > risingThreshold) {
|
andrewm@0
|
774 *rising = false;
|
andrewm@0
|
775 value = 0;
|
andrewm@0
|
776 }
|
andrewm@0
|
777 else
|
andrewm@0
|
778 value = 65535;
|
andrewm@0
|
779 }
|
andrewm@0
|
780 else {
|
andrewm@0
|
781 if(input < fallingThreshold) {
|
andrewm@0
|
782 *rising = true;
|
andrewm@0
|
783 value = 65535;
|
andrewm@0
|
784 }
|
andrewm@0
|
785 else
|
andrewm@0
|
786 value = 0;
|
andrewm@0
|
787 }
|
andrewm@0
|
788
|
andrewm@0
|
789 return value;
|
andrewm@0
|
790 }
|
andrewm@0
|
791
|
andrewm@0
|
792 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
793 // Test the functionality of the D-Box cape by checking each input and output
|
andrewm@0
|
794 // Loopback cable from ADC to DAC needed
|
andrewm@0
|
795 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
796 uint16_t *matrixIn, uint16_t *matrixOut)
|
andrewm@0
|
797 {
|
andrewm@0
|
798 static float phase = 0.0;
|
andrewm@0
|
799 static int sampleCounter = 0;
|
andrewm@0
|
800 static int invertChannel = 0;
|
andrewm@0
|
801
|
andrewm@0
|
802 // Play a sine wave on the audio output
|
andrewm@0
|
803 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
804 audioOut[2*n] = audioOut[2*n + 1] = 0.5*sinf(phase);
|
andrewm@0
|
805 phase += 2.0 * M_PI * 440.0 / 44100.0;
|
andrewm@0
|
806 if(phase >= 2.0 * M_PI)
|
andrewm@0
|
807 phase -= 2.0 * M_PI;
|
andrewm@0
|
808 }
|
andrewm@0
|
809
|
andrewm@0
|
810 for(int n = 0; n < numMatrixFrames; n++) {
|
andrewm@0
|
811 // Change outputs every 512 samples
|
andrewm@0
|
812 if(sampleCounter < 512) {
|
andrewm@0
|
813 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
814 if(k == invertChannel)
|
andrewm@0
|
815 matrixOut[n*8 + k] = 50000;
|
andrewm@0
|
816 else
|
andrewm@0
|
817 matrixOut[n*8 + k] = 0;
|
andrewm@0
|
818 }
|
andrewm@0
|
819 }
|
andrewm@0
|
820 else {
|
andrewm@0
|
821 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
822 if(k == invertChannel)
|
andrewm@0
|
823 matrixOut[n*8 + k] = 0;
|
andrewm@0
|
824 else
|
andrewm@0
|
825 matrixOut[n*8 + k] = 50000;
|
andrewm@0
|
826 }
|
andrewm@0
|
827 }
|
andrewm@0
|
828
|
andrewm@0
|
829 // Read after 256 samples: input should be low
|
andrewm@0
|
830 if(sampleCounter == 256) {
|
andrewm@0
|
831 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
832 if(k == invertChannel) {
|
andrewm@0
|
833 if(matrixIn[n*8 + k] < 50000) {
|
andrewm@0
|
834 dbox_printf("FAIL channel %d -- output HIGH input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
835 }
|
andrewm@0
|
836 }
|
andrewm@0
|
837 else {
|
andrewm@0
|
838 if(matrixIn[n*8 + k] > 2048) {
|
andrewm@0
|
839 dbox_printf("FAIL channel %d -- output LOW input %d\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
840 }
|
andrewm@0
|
841 }
|
andrewm@0
|
842 }
|
andrewm@0
|
843 }
|
andrewm@0
|
844 else if(sampleCounter == 768) {
|
andrewm@0
|
845 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
846 if(k == invertChannel) {
|
andrewm@0
|
847 if(matrixIn[n*8 + k] > 2048) {
|
andrewm@0
|
848 dbox_printf("FAIL channel %d -- output LOW input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
849 }
|
andrewm@0
|
850 }
|
andrewm@0
|
851 else {
|
andrewm@0
|
852 if(matrixIn[n*8 + k] < 50000) {
|
andrewm@0
|
853 dbox_printf("FAIL channel %d -- output HIGH input %d\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
854 }
|
andrewm@0
|
855 }
|
andrewm@0
|
856 }
|
andrewm@0
|
857 }
|
andrewm@0
|
858
|
andrewm@0
|
859 if(++sampleCounter >= 1024) {
|
andrewm@0
|
860 sampleCounter = 0;
|
andrewm@0
|
861 invertChannel++;
|
andrewm@0
|
862 if(invertChannel >= 8)
|
andrewm@0
|
863 invertChannel = 0;
|
andrewm@0
|
864 }
|
andrewm@0
|
865 }
|
andrewm@0
|
866 }
|
andrewm@0
|
867 #endif
|
andrewm@0
|
868
|
andrewm@0
|
869
|