andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@0
|
27 #include <rtdk.h>
|
andrewm@0
|
28
|
andrewm@0
|
29 #include "../include/RTAudio.h"
|
andrewm@0
|
30 #include "../include/PRU.h"
|
andrewm@0
|
31 #include "../include/I2c_Codec.h"
|
andrewm@0
|
32 #include "../include/render.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
andrewm@0
|
34
|
andrewm@0
|
35 using namespace std;
|
andrewm@0
|
36
|
andrewm@0
|
37 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
38 // can schedule
|
andrewm@0
|
39 typedef struct {
|
andrewm@0
|
40 RT_TASK task;
|
andrewm@0
|
41 void (*function)(void);
|
andrewm@0
|
42 char *name;
|
andrewm@0
|
43 int priority;
|
andrewm@0
|
44 } InternalAuxiliaryTask;
|
andrewm@0
|
45
|
andrewm@0
|
46 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@0
|
47
|
andrewm@0
|
48 // Real-time tasks and objects
|
andrewm@0
|
49 RT_TASK gRTAudioThread;
|
andrewm@0
|
50 PRU *gPRU = 0;
|
andrewm@0
|
51 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
52
|
andrewm@0
|
53 vector<InternalAuxiliaryTask*> gAuxTasks;
|
andrewm@0
|
54
|
andrewm@0
|
55 // Flag which tells the audio task to stop
|
andrewm@0
|
56 bool gShouldStop = false;
|
andrewm@0
|
57
|
andrewm@0
|
58 // general settings
|
andrewm@0
|
59 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
60 int gAmplifierMutePin = -1;
|
andrewm@5
|
61 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
62
|
andrewm@13
|
63 // Number of audio and matrix channels, globally accessible
|
andrewm@13
|
64 // At least gNumMatrixChannels needs to be global to be used
|
andrewm@13
|
65 // by the analogRead() and analogWrite() macros without creating
|
andrewm@13
|
66 // extra confusion in their use cases by passing this argument
|
andrewm@13
|
67 int gNumAudioChannels = 0;
|
andrewm@13
|
68 int gNumMatrixChannels = 0;
|
andrewm@0
|
69
|
andrewm@0
|
70 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
71 // audio, but does not actually start the calculations.
|
andrewm@0
|
72 // periodSize indicates the number of _sensor_ frames per period: the audio period size
|
andrewm@0
|
73 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
|
andrewm@0
|
74 // plus any latency inherent in the ADCs and DACs themselves.
|
andrewm@12
|
75 // useMatrix indicates whether to enable the ADC and DAC or just use the audio codec.
|
andrewm@12
|
76 // numMatrixChannels indicates how many ADC and DAC channels to use.
|
andrewm@0
|
77 // userData is an opaque pointer which will be passed through to the initialise_render()
|
andrewm@0
|
78 // function for application-specific use
|
andrewm@0
|
79 //
|
andrewm@0
|
80 // Returns 0 on success.
|
andrewm@0
|
81
|
andrewm@5
|
82 int BeagleRT_initAudio(RTAudioSettings *settings, void *userData)
|
andrewm@0
|
83 {
|
andrewm@0
|
84 rt_print_auto_init(1);
|
andrewm@5
|
85 setVerboseLevel(settings->verbose);
|
andrewm@5
|
86
|
andrewm@0
|
87 if(gRTAudioVerbose == 1)
|
andrewm@0
|
88 rt_printf("Running with Xenomai\n");
|
andrewm@0
|
89
|
andrewm@5
|
90 if(gRTAudioVerbose) {
|
andrewm@5
|
91 cout << "Starting with period size " << settings->periodSize << "; ";
|
andrewm@5
|
92 if(settings->useMatrix)
|
andrewm@5
|
93 cout << "matrix enabled\n";
|
andrewm@5
|
94 else
|
andrewm@5
|
95 cout << "matrix disabled\n";
|
andrewm@5
|
96 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
97 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
98 if(settings->beginMuted)
|
andrewm@5
|
99 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
100 }
|
andrewm@0
|
101
|
andrewm@0
|
102 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
103 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
104 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
105 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
106
|
andrewm@5
|
107 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
108 if(gRTAudioVerbose)
|
andrewm@0
|
109 cout << "Warning: couldn't export amplifier mute pin\n";
|
andrewm@0
|
110 }
|
andrewm@5
|
111 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
112 if(gRTAudioVerbose)
|
andrewm@0
|
113 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
114 return -1;
|
andrewm@0
|
115 }
|
andrewm@5
|
116 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
117 if(gRTAudioVerbose)
|
andrewm@0
|
118 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
119 return -1;
|
andrewm@0
|
120 }
|
andrewm@0
|
121 }
|
andrewm@0
|
122
|
andrewm@12
|
123 // Limit the matrix channels to sane values
|
andrewm@12
|
124 if(settings->numMatrixChannels >= 8)
|
andrewm@12
|
125 settings->numMatrixChannels = 8;
|
andrewm@12
|
126 else if(settings->numMatrixChannels >= 4)
|
andrewm@12
|
127 settings->numMatrixChannels = 4;
|
andrewm@12
|
128 else
|
andrewm@12
|
129 settings->numMatrixChannels = 2;
|
andrewm@12
|
130
|
andrewm@12
|
131 // Sanity check the combination of channels and period size
|
andrewm@12
|
132 if(settings->numMatrixChannels <= 4 && settings->periodSize < 2) {
|
andrewm@12
|
133 cout << "Error: " << settings->numMatrixChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
|
andrewm@12
|
134 return 1;
|
andrewm@12
|
135 }
|
andrewm@12
|
136 if(settings->numMatrixChannels <= 2 && settings->periodSize < 4) {
|
andrewm@12
|
137 cout << "Error: " << settings->numMatrixChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
|
andrewm@12
|
138 return 1;
|
andrewm@12
|
139 }
|
andrewm@12
|
140
|
andrewm@0
|
141 // Use PRU for audio
|
andrewm@0
|
142 gPRU = new PRU();
|
andrewm@0
|
143 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
144
|
andrewm@5
|
145 if(gPRU->prepareGPIO(settings->useMatrix, 1, 1)) {
|
andrewm@0
|
146 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
147 return 1;
|
andrewm@0
|
148 }
|
andrewm@12
|
149 if(gPRU->initialise(0, settings->periodSize, settings->numMatrixChannels, true)) {
|
andrewm@0
|
150 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
151 return 1;
|
andrewm@0
|
152 }
|
andrewm@5
|
153 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
154 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
155 return 1;
|
andrewm@0
|
156 }
|
andrewm@0
|
157 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
158 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
159 return 1;
|
andrewm@0
|
160 }
|
andrewm@0
|
161
|
andrewm@5
|
162 // Set default volume levels
|
andrewm@5
|
163 BeagleRT_setDACLevel(settings->dacLevel);
|
andrewm@5
|
164 BeagleRT_setADCLevel(settings->adcLevel);
|
andrewm@5
|
165 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
166
|
andrewm@12
|
167 // Initialise the rendering environment: pass the number of audio and matrix
|
andrewm@12
|
168 // channels, the period size for matrix and audio, and the sample rates
|
andrewm@12
|
169
|
andrewm@12
|
170 int audioPeriodSize = settings->periodSize * 2;
|
andrewm@12
|
171 float audioSampleRate = 44100.0;
|
andrewm@12
|
172 float matrixSampleRate = 22050.0;
|
andrewm@12
|
173 if(settings->useMatrix) {
|
andrewm@12
|
174 audioPeriodSize = settings->periodSize * settings->numMatrixChannels / 4;
|
andrewm@12
|
175 matrixSampleRate = audioSampleRate * 4.0 / (float)settings->numMatrixChannels;
|
andrewm@12
|
176 }
|
andrewm@12
|
177
|
andrewm@13
|
178 gNumAudioChannels = 2;
|
andrewm@13
|
179 gNumMatrixChannels = settings->useMatrix ? settings->numMatrixChannels : 0;
|
andrewm@13
|
180
|
andrewm@13
|
181 if(!initialise_render(gNumMatrixChannels, gNumAudioChannels,
|
andrewm@12
|
182 settings->useMatrix ? settings->periodSize : 0, /* matrix period size */
|
andrewm@12
|
183 audioPeriodSize,
|
andrewm@12
|
184 matrixSampleRate, audioSampleRate,
|
andrewm@12
|
185 userData)) {
|
andrewm@0
|
186 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
187 return 1;
|
andrewm@0
|
188 }
|
andrewm@0
|
189
|
andrewm@0
|
190 return 0;
|
andrewm@0
|
191 }
|
andrewm@0
|
192
|
andrewm@0
|
193 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
194 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
195 // turn will call the audio render() callback function every time
|
andrewm@0
|
196 // there is new data to process.
|
andrewm@0
|
197
|
andrewm@0
|
198 void audioLoop(void *)
|
andrewm@0
|
199 {
|
andrewm@0
|
200 if(gRTAudioVerbose==1)
|
andrewm@0
|
201 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
202
|
andrewm@0
|
203 // PRU audio
|
andrewm@0
|
204 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
205
|
andrewm@0
|
206 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
207 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
208 gShouldStop = 1;
|
andrewm@0
|
209 }
|
andrewm@0
|
210 else {
|
andrewm@15
|
211 if(gPRU->start()) {
|
andrewm@15
|
212 rt_printf("Error: unable to start PRU\n");
|
andrewm@0
|
213 gShouldStop = 1;
|
andrewm@0
|
214 }
|
andrewm@0
|
215 else {
|
andrewm@0
|
216 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
217
|
andrewm@5
|
218 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
219 // First unmute the amplifier
|
andrewm@5
|
220 if(BeagleRT_muteSpeakers(0)) {
|
andrewm@5
|
221 if(gRTAudioVerbose)
|
andrewm@5
|
222 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
223 }
|
andrewm@0
|
224 }
|
andrewm@0
|
225
|
andrewm@0
|
226 gPRU->loop();
|
andrewm@0
|
227
|
andrewm@0
|
228 // Now clean up
|
andrewm@0
|
229 // gPRU->waitForFinish();
|
andrewm@0
|
230 gPRU->disable();
|
andrewm@0
|
231 gAudioCodec->stopAudio();
|
andrewm@0
|
232 gPRU->cleanupGPIO();
|
andrewm@0
|
233 }
|
andrewm@0
|
234 }
|
andrewm@0
|
235
|
andrewm@0
|
236 if(gRTAudioVerbose == 1)
|
andrewm@0
|
237 rt_printf("audio thread ended\n");
|
andrewm@0
|
238 }
|
andrewm@0
|
239
|
andrewm@0
|
240 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@0
|
241 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
|
andrewm@0
|
242 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
andrewm@0
|
243 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
|
andrewm@0
|
244 {
|
andrewm@0
|
245 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
246
|
andrewm@0
|
247 // Attempt to create the task
|
andrewm@0
|
248 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
249 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
250 free(newTask);
|
andrewm@0
|
251 return 0;
|
andrewm@0
|
252 }
|
andrewm@0
|
253
|
andrewm@0
|
254 // Populate the rest of the data structure and store it in the vector
|
andrewm@0
|
255 newTask->function = functionToCall;
|
andrewm@0
|
256 newTask->name = strdup(name);
|
andrewm@0
|
257 newTask->priority = priority;
|
andrewm@0
|
258
|
andrewm@0
|
259 gAuxTasks.push_back(newTask);
|
andrewm@0
|
260
|
andrewm@0
|
261 return (AuxiliaryTask)newTask;
|
andrewm@0
|
262 }
|
andrewm@0
|
263
|
andrewm@0
|
264 // Schedule a previously created auxiliary task. It will run when the priority rules next
|
andrewm@0
|
265 // allow it to be scheduled.
|
andrewm@0
|
266 void scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
267 {
|
andrewm@0
|
268 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
andrewm@0
|
269
|
andrewm@0
|
270 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
271 }
|
andrewm@0
|
272
|
andrewm@0
|
273 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
274 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
275 // Treat the argument as containing the task structure
|
andrewm@0
|
276 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
277 {
|
andrewm@0
|
278 // Get function to call from the argument
|
andrewm@0
|
279 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
|
andrewm@0
|
280 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
|
andrewm@0
|
281
|
andrewm@0
|
282 // Wait for a notification
|
andrewm@0
|
283 rt_task_suspend(NULL);
|
andrewm@0
|
284
|
andrewm@0
|
285 while(!gShouldStop) {
|
andrewm@0
|
286 // Then run the calculations
|
andrewm@0
|
287 auxiliary_function();
|
andrewm@0
|
288
|
andrewm@0
|
289 // Wait for a notification
|
andrewm@0
|
290 rt_task_suspend(NULL);
|
andrewm@0
|
291 }
|
andrewm@0
|
292
|
andrewm@0
|
293 if(gRTAudioVerbose == 1)
|
andrewm@0
|
294 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
295 }
|
andrewm@0
|
296
|
andrewm@0
|
297 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
298 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
299 // on success.
|
andrewm@0
|
300
|
andrewm@5
|
301 int BeagleRT_startAudio()
|
andrewm@0
|
302 {
|
andrewm@0
|
303 // Create audio thread with the highest priority
|
andrewm@0
|
304 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
305 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
306 return -1;
|
andrewm@0
|
307 }
|
andrewm@0
|
308
|
andrewm@0
|
309 // Start all RT threads
|
andrewm@0
|
310 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
311 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
312 return -1;
|
andrewm@0
|
313 }
|
andrewm@0
|
314
|
andrewm@0
|
315 // The user may have created other tasks. Start those also.
|
andrewm@0
|
316 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
317 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
318 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
319
|
andrewm@0
|
320 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
andrewm@0
|
321 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
andrewm@0
|
322 return -1;
|
andrewm@0
|
323 }
|
andrewm@0
|
324 }
|
andrewm@0
|
325
|
andrewm@0
|
326 return 0;
|
andrewm@0
|
327 }
|
andrewm@0
|
328
|
andrewm@0
|
329 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
330 // for the tasks to complete before returning.
|
andrewm@0
|
331
|
andrewm@5
|
332 void BeagleRT_stopAudio()
|
andrewm@0
|
333 {
|
andrewm@0
|
334 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
335 gShouldStop = true;
|
andrewm@0
|
336
|
andrewm@5
|
337 if(gRTAudioVerbose)
|
andrewm@5
|
338 cout << "Stopping audio...\n";
|
andrewm@5
|
339
|
andrewm@0
|
340 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
341 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
342
|
andrewm@0
|
343 // Stop all the auxiliary threads too
|
andrewm@0
|
344 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
345 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
346 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
347
|
andrewm@0
|
348 // Wake up each thread and join it
|
andrewm@0
|
349 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
350 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
351 }
|
andrewm@0
|
352 }
|
andrewm@0
|
353
|
andrewm@0
|
354 // Free any resources associated with PRU real-time audio
|
andrewm@5
|
355 void BeagleRT_cleanupAudio()
|
andrewm@0
|
356 {
|
andrewm@0
|
357 cleanup_render();
|
andrewm@0
|
358
|
andrewm@0
|
359 // Clean up the auxiliary tasks
|
andrewm@0
|
360 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
361 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
362 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
363
|
andrewm@0
|
364 // Free the name string and the struct itself
|
andrewm@0
|
365 free(taskStruct->name);
|
andrewm@0
|
366 free(taskStruct);
|
andrewm@0
|
367 }
|
andrewm@0
|
368 gAuxTasks.clear();
|
andrewm@0
|
369
|
andrewm@0
|
370 if(gPRU != 0)
|
andrewm@0
|
371 delete gPRU;
|
andrewm@0
|
372 if(gAudioCodec != 0)
|
andrewm@0
|
373 delete gAudioCodec;
|
andrewm@0
|
374
|
andrewm@0
|
375 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
376 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
377 gAmplifierMutePin = -1;
|
andrewm@0
|
378 }
|
andrewm@0
|
379
|
andrewm@5
|
380 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
381 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
382 int BeagleRT_setDACLevel(float decibels)
|
andrewm@5
|
383 {
|
andrewm@5
|
384 if(gAudioCodec == 0)
|
andrewm@5
|
385 return -1;
|
andrewm@5
|
386 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
387 }
|
andrewm@5
|
388
|
andrewm@5
|
389 // Set the level of the ADC
|
andrewm@5
|
390 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
andrewm@5
|
391 int BeagleRT_setADCLevel(float decibels)
|
andrewm@5
|
392 {
|
andrewm@5
|
393 if(gAudioCodec == 0)
|
andrewm@5
|
394 return -1;
|
andrewm@5
|
395 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
396 }
|
andrewm@5
|
397
|
andrewm@5
|
398 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
399 // output only (not line out or speaker)
|
andrewm@5
|
400 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
401 int BeagleRT_setHeadphoneLevel(float decibels)
|
andrewm@5
|
402 {
|
andrewm@5
|
403 if(gAudioCodec == 0)
|
andrewm@5
|
404 return -1;
|
andrewm@5
|
405 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
406 }
|
andrewm@5
|
407
|
andrewm@5
|
408 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
409 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
410 // Returns 0 on success
|
andrewm@5
|
411 int BeagleRT_muteSpeakers(int mute)
|
andrewm@5
|
412 {
|
andrewm@5
|
413 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
414
|
andrewm@5
|
415 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
416 if(gAmplifierMutePin < 0)
|
andrewm@5
|
417 return -1;
|
andrewm@5
|
418
|
andrewm@5
|
419 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
420 }
|
andrewm@5
|
421
|
andrewm@0
|
422 // Set the verbosity level
|
andrewm@0
|
423 void setVerboseLevel(int level)
|
andrewm@0
|
424 {
|
andrewm@0
|
425 gRTAudioVerbose = level;
|
andrewm@0
|
426 }
|