andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@0
|
27 #include <rtdk.h>
|
andrewm@0
|
28
|
andrewm@0
|
29 #include "../include/RTAudio.h"
|
andrewm@0
|
30 #include "../include/PRU.h"
|
andrewm@0
|
31 #include "../include/I2c_Codec.h"
|
andrewm@0
|
32 #include "../include/render.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
andrewm@0
|
34
|
andrewm@0
|
35 using namespace std;
|
andrewm@0
|
36
|
andrewm@0
|
37 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
38 // can schedule
|
andrewm@0
|
39 typedef struct {
|
andrewm@0
|
40 RT_TASK task;
|
andrewm@0
|
41 void (*function)(void);
|
andrewm@0
|
42 char *name;
|
andrewm@0
|
43 int priority;
|
andrewm@0
|
44 } InternalAuxiliaryTask;
|
andrewm@0
|
45
|
andrewm@0
|
46 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@0
|
47
|
andrewm@0
|
48 // Real-time tasks and objects
|
andrewm@0
|
49 RT_TASK gRTAudioThread;
|
andrewm@0
|
50 PRU *gPRU = 0;
|
andrewm@0
|
51 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
52
|
andrewm@0
|
53 vector<InternalAuxiliaryTask*> gAuxTasks;
|
andrewm@0
|
54
|
andrewm@0
|
55 // Flag which tells the audio task to stop
|
andrewm@0
|
56 bool gShouldStop = false;
|
andrewm@0
|
57
|
andrewm@0
|
58 // general settings
|
andrewm@0
|
59 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
60 char gPRUFilename[256] = "pru_rtaudio.bin"; // path to PRU binary file
|
andrewm@0
|
61 int gAmplifierMutePin = -1;
|
andrewm@5
|
62 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
63
|
andrewm@13
|
64 // Number of audio and matrix channels, globally accessible
|
andrewm@13
|
65 // At least gNumMatrixChannels needs to be global to be used
|
andrewm@13
|
66 // by the analogRead() and analogWrite() macros without creating
|
andrewm@13
|
67 // extra confusion in their use cases by passing this argument
|
andrewm@13
|
68 int gNumAudioChannels = 0;
|
andrewm@13
|
69 int gNumMatrixChannels = 0;
|
andrewm@0
|
70
|
andrewm@0
|
71 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
72 // audio, but does not actually start the calculations.
|
andrewm@0
|
73 // periodSize indicates the number of _sensor_ frames per period: the audio period size
|
andrewm@0
|
74 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
|
andrewm@0
|
75 // plus any latency inherent in the ADCs and DACs themselves.
|
andrewm@12
|
76 // useMatrix indicates whether to enable the ADC and DAC or just use the audio codec.
|
andrewm@12
|
77 // numMatrixChannels indicates how many ADC and DAC channels to use.
|
andrewm@0
|
78 // userData is an opaque pointer which will be passed through to the initialise_render()
|
andrewm@0
|
79 // function for application-specific use
|
andrewm@0
|
80 //
|
andrewm@0
|
81 // Returns 0 on success.
|
andrewm@0
|
82
|
andrewm@5
|
83 int BeagleRT_initAudio(RTAudioSettings *settings, void *userData)
|
andrewm@0
|
84 {
|
andrewm@0
|
85 rt_print_auto_init(1);
|
andrewm@5
|
86 setVerboseLevel(settings->verbose);
|
andrewm@5
|
87
|
andrewm@0
|
88 if(gRTAudioVerbose == 1)
|
andrewm@0
|
89 rt_printf("Running with Xenomai\n");
|
andrewm@0
|
90
|
andrewm@5
|
91 if(gRTAudioVerbose) {
|
andrewm@5
|
92 cout << "Starting with period size " << settings->periodSize << "; ";
|
andrewm@5
|
93 if(settings->useMatrix)
|
andrewm@5
|
94 cout << "matrix enabled\n";
|
andrewm@5
|
95 else
|
andrewm@5
|
96 cout << "matrix disabled\n";
|
andrewm@5
|
97 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
98 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
99 if(settings->beginMuted)
|
andrewm@5
|
100 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
101 }
|
andrewm@0
|
102
|
andrewm@0
|
103 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
104 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
105 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
106 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
107
|
andrewm@5
|
108 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
109 if(gRTAudioVerbose)
|
andrewm@0
|
110 cout << "Warning: couldn't export amplifier mute pin\n";
|
andrewm@0
|
111 }
|
andrewm@5
|
112 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
113 if(gRTAudioVerbose)
|
andrewm@0
|
114 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
115 return -1;
|
andrewm@0
|
116 }
|
andrewm@5
|
117 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
118 if(gRTAudioVerbose)
|
andrewm@0
|
119 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
120 return -1;
|
andrewm@0
|
121 }
|
andrewm@0
|
122 }
|
andrewm@0
|
123
|
andrewm@12
|
124 // Limit the matrix channels to sane values
|
andrewm@12
|
125 if(settings->numMatrixChannels >= 8)
|
andrewm@12
|
126 settings->numMatrixChannels = 8;
|
andrewm@12
|
127 else if(settings->numMatrixChannels >= 4)
|
andrewm@12
|
128 settings->numMatrixChannels = 4;
|
andrewm@12
|
129 else
|
andrewm@12
|
130 settings->numMatrixChannels = 2;
|
andrewm@12
|
131
|
andrewm@12
|
132 // Sanity check the combination of channels and period size
|
andrewm@12
|
133 if(settings->numMatrixChannels <= 4 && settings->periodSize < 2) {
|
andrewm@12
|
134 cout << "Error: " << settings->numMatrixChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
|
andrewm@12
|
135 return 1;
|
andrewm@12
|
136 }
|
andrewm@12
|
137 if(settings->numMatrixChannels <= 2 && settings->periodSize < 4) {
|
andrewm@12
|
138 cout << "Error: " << settings->numMatrixChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
|
andrewm@12
|
139 return 1;
|
andrewm@12
|
140 }
|
andrewm@12
|
141
|
andrewm@0
|
142 // Use PRU for audio
|
andrewm@0
|
143 gPRU = new PRU();
|
andrewm@0
|
144 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
145
|
andrewm@5
|
146 if(gPRU->prepareGPIO(settings->useMatrix, 1, 1)) {
|
andrewm@0
|
147 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
148 return 1;
|
andrewm@0
|
149 }
|
andrewm@12
|
150 if(gPRU->initialise(0, settings->periodSize, settings->numMatrixChannels, true)) {
|
andrewm@0
|
151 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
152 return 1;
|
andrewm@0
|
153 }
|
andrewm@5
|
154 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
155 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
156 return 1;
|
andrewm@0
|
157 }
|
andrewm@0
|
158 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
159 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
160 return 1;
|
andrewm@0
|
161 }
|
andrewm@0
|
162
|
andrewm@5
|
163 // Set default volume levels
|
andrewm@5
|
164 BeagleRT_setDACLevel(settings->dacLevel);
|
andrewm@5
|
165 BeagleRT_setADCLevel(settings->adcLevel);
|
andrewm@5
|
166 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
167
|
andrewm@12
|
168 // Initialise the rendering environment: pass the number of audio and matrix
|
andrewm@12
|
169 // channels, the period size for matrix and audio, and the sample rates
|
andrewm@12
|
170
|
andrewm@12
|
171 int audioPeriodSize = settings->periodSize * 2;
|
andrewm@12
|
172 float audioSampleRate = 44100.0;
|
andrewm@12
|
173 float matrixSampleRate = 22050.0;
|
andrewm@12
|
174 if(settings->useMatrix) {
|
andrewm@12
|
175 audioPeriodSize = settings->periodSize * settings->numMatrixChannels / 4;
|
andrewm@12
|
176 matrixSampleRate = audioSampleRate * 4.0 / (float)settings->numMatrixChannels;
|
andrewm@12
|
177 }
|
andrewm@12
|
178
|
andrewm@13
|
179 gNumAudioChannels = 2;
|
andrewm@13
|
180 gNumMatrixChannels = settings->useMatrix ? settings->numMatrixChannels : 0;
|
andrewm@13
|
181
|
andrewm@13
|
182 if(!initialise_render(gNumMatrixChannels, gNumAudioChannels,
|
andrewm@12
|
183 settings->useMatrix ? settings->periodSize : 0, /* matrix period size */
|
andrewm@12
|
184 audioPeriodSize,
|
andrewm@12
|
185 matrixSampleRate, audioSampleRate,
|
andrewm@12
|
186 userData)) {
|
andrewm@0
|
187 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
188 return 1;
|
andrewm@0
|
189 }
|
andrewm@0
|
190
|
andrewm@0
|
191 return 0;
|
andrewm@0
|
192 }
|
andrewm@0
|
193
|
andrewm@0
|
194 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
195 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
196 // turn will call the audio render() callback function every time
|
andrewm@0
|
197 // there is new data to process.
|
andrewm@0
|
198
|
andrewm@0
|
199 void audioLoop(void *)
|
andrewm@0
|
200 {
|
andrewm@0
|
201 if(gRTAudioVerbose==1)
|
andrewm@0
|
202 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
203
|
andrewm@0
|
204 // PRU audio
|
andrewm@0
|
205 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
206
|
andrewm@0
|
207 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
208 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
209 gShouldStop = 1;
|
andrewm@0
|
210 }
|
andrewm@0
|
211 else {
|
andrewm@0
|
212 if(gPRU->start(gPRUFilename)) {
|
andrewm@0
|
213 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
214 gShouldStop = 1;
|
andrewm@0
|
215 }
|
andrewm@0
|
216 else {
|
andrewm@0
|
217 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
218
|
andrewm@5
|
219 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
220 // First unmute the amplifier
|
andrewm@5
|
221 if(BeagleRT_muteSpeakers(0)) {
|
andrewm@5
|
222 if(gRTAudioVerbose)
|
andrewm@5
|
223 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
224 }
|
andrewm@0
|
225 }
|
andrewm@0
|
226
|
andrewm@0
|
227 gPRU->loop();
|
andrewm@0
|
228
|
andrewm@0
|
229 // Now clean up
|
andrewm@0
|
230 // gPRU->waitForFinish();
|
andrewm@0
|
231 gPRU->disable();
|
andrewm@0
|
232 gAudioCodec->stopAudio();
|
andrewm@0
|
233 gPRU->cleanupGPIO();
|
andrewm@0
|
234 }
|
andrewm@0
|
235 }
|
andrewm@0
|
236
|
andrewm@0
|
237 if(gRTAudioVerbose == 1)
|
andrewm@0
|
238 rt_printf("audio thread ended\n");
|
andrewm@0
|
239 }
|
andrewm@0
|
240
|
andrewm@0
|
241 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@0
|
242 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
|
andrewm@0
|
243 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
andrewm@0
|
244 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
|
andrewm@0
|
245 {
|
andrewm@0
|
246 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
247
|
andrewm@0
|
248 // Attempt to create the task
|
andrewm@0
|
249 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
250 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
251 free(newTask);
|
andrewm@0
|
252 return 0;
|
andrewm@0
|
253 }
|
andrewm@0
|
254
|
andrewm@0
|
255 // Populate the rest of the data structure and store it in the vector
|
andrewm@0
|
256 newTask->function = functionToCall;
|
andrewm@0
|
257 newTask->name = strdup(name);
|
andrewm@0
|
258 newTask->priority = priority;
|
andrewm@0
|
259
|
andrewm@0
|
260 gAuxTasks.push_back(newTask);
|
andrewm@0
|
261
|
andrewm@0
|
262 return (AuxiliaryTask)newTask;
|
andrewm@0
|
263 }
|
andrewm@0
|
264
|
andrewm@0
|
265 // Schedule a previously created auxiliary task. It will run when the priority rules next
|
andrewm@0
|
266 // allow it to be scheduled.
|
andrewm@0
|
267 void scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
268 {
|
andrewm@0
|
269 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
andrewm@0
|
270
|
andrewm@0
|
271 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
272 }
|
andrewm@0
|
273
|
andrewm@0
|
274 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
275 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
276 // Treat the argument as containing the task structure
|
andrewm@0
|
277 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
278 {
|
andrewm@0
|
279 // Get function to call from the argument
|
andrewm@0
|
280 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
|
andrewm@0
|
281 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
|
andrewm@0
|
282
|
andrewm@0
|
283 // Wait for a notification
|
andrewm@0
|
284 rt_task_suspend(NULL);
|
andrewm@0
|
285
|
andrewm@0
|
286 while(!gShouldStop) {
|
andrewm@0
|
287 // Then run the calculations
|
andrewm@0
|
288 auxiliary_function();
|
andrewm@0
|
289
|
andrewm@0
|
290 // Wait for a notification
|
andrewm@0
|
291 rt_task_suspend(NULL);
|
andrewm@0
|
292 }
|
andrewm@0
|
293
|
andrewm@0
|
294 if(gRTAudioVerbose == 1)
|
andrewm@0
|
295 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
296 }
|
andrewm@0
|
297
|
andrewm@0
|
298 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
299 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
300 // on success.
|
andrewm@0
|
301
|
andrewm@5
|
302 int BeagleRT_startAudio()
|
andrewm@0
|
303 {
|
andrewm@0
|
304 // Create audio thread with the highest priority
|
andrewm@0
|
305 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
306 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
307 return -1;
|
andrewm@0
|
308 }
|
andrewm@0
|
309
|
andrewm@0
|
310 // Start all RT threads
|
andrewm@0
|
311 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
312 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
313 return -1;
|
andrewm@0
|
314 }
|
andrewm@0
|
315
|
andrewm@0
|
316 // The user may have created other tasks. Start those also.
|
andrewm@0
|
317 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
318 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
319 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
320
|
andrewm@0
|
321 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
andrewm@0
|
322 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
andrewm@0
|
323 return -1;
|
andrewm@0
|
324 }
|
andrewm@0
|
325 }
|
andrewm@0
|
326
|
andrewm@0
|
327 return 0;
|
andrewm@0
|
328 }
|
andrewm@0
|
329
|
andrewm@0
|
330 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
331 // for the tasks to complete before returning.
|
andrewm@0
|
332
|
andrewm@5
|
333 void BeagleRT_stopAudio()
|
andrewm@0
|
334 {
|
andrewm@0
|
335 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
336 gShouldStop = true;
|
andrewm@0
|
337
|
andrewm@5
|
338 if(gRTAudioVerbose)
|
andrewm@5
|
339 cout << "Stopping audio...\n";
|
andrewm@5
|
340
|
andrewm@0
|
341 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
342 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
343
|
andrewm@0
|
344 // Stop all the auxiliary threads too
|
andrewm@0
|
345 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
346 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
347 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
348
|
andrewm@0
|
349 // Wake up each thread and join it
|
andrewm@0
|
350 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
351 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
352 }
|
andrewm@0
|
353 }
|
andrewm@0
|
354
|
andrewm@0
|
355 // Free any resources associated with PRU real-time audio
|
andrewm@5
|
356 void BeagleRT_cleanupAudio()
|
andrewm@0
|
357 {
|
andrewm@0
|
358 cleanup_render();
|
andrewm@0
|
359
|
andrewm@0
|
360 // Clean up the auxiliary tasks
|
andrewm@0
|
361 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
362 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
363 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
364
|
andrewm@0
|
365 // Free the name string and the struct itself
|
andrewm@0
|
366 free(taskStruct->name);
|
andrewm@0
|
367 free(taskStruct);
|
andrewm@0
|
368 }
|
andrewm@0
|
369 gAuxTasks.clear();
|
andrewm@0
|
370
|
andrewm@0
|
371 if(gPRU != 0)
|
andrewm@0
|
372 delete gPRU;
|
andrewm@0
|
373 if(gAudioCodec != 0)
|
andrewm@0
|
374 delete gAudioCodec;
|
andrewm@0
|
375
|
andrewm@0
|
376 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
377 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
378 gAmplifierMutePin = -1;
|
andrewm@0
|
379 }
|
andrewm@0
|
380
|
andrewm@5
|
381 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
382 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
383 int BeagleRT_setDACLevel(float decibels)
|
andrewm@5
|
384 {
|
andrewm@5
|
385 if(gAudioCodec == 0)
|
andrewm@5
|
386 return -1;
|
andrewm@5
|
387 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
388 }
|
andrewm@5
|
389
|
andrewm@5
|
390 // Set the level of the ADC
|
andrewm@5
|
391 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
andrewm@5
|
392 int BeagleRT_setADCLevel(float decibels)
|
andrewm@5
|
393 {
|
andrewm@5
|
394 if(gAudioCodec == 0)
|
andrewm@5
|
395 return -1;
|
andrewm@5
|
396 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
397 }
|
andrewm@5
|
398
|
andrewm@5
|
399 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
400 // output only (not line out or speaker)
|
andrewm@5
|
401 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
402 int BeagleRT_setHeadphoneLevel(float decibels)
|
andrewm@5
|
403 {
|
andrewm@5
|
404 if(gAudioCodec == 0)
|
andrewm@5
|
405 return -1;
|
andrewm@5
|
406 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
407 }
|
andrewm@5
|
408
|
andrewm@5
|
409 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
410 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
411 // Returns 0 on success
|
andrewm@5
|
412 int BeagleRT_muteSpeakers(int mute)
|
andrewm@5
|
413 {
|
andrewm@5
|
414 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
415
|
andrewm@5
|
416 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
417 if(gAmplifierMutePin < 0)
|
andrewm@5
|
418 return -1;
|
andrewm@5
|
419
|
andrewm@5
|
420 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
421 }
|
andrewm@5
|
422
|
andrewm@0
|
423 // Set the verbosity level
|
andrewm@0
|
424 void setVerboseLevel(int level)
|
andrewm@0
|
425 {
|
andrewm@0
|
426 gRTAudioVerbose = level;
|
andrewm@0
|
427 }
|