annotate core/RTAudio.cpp @ 13:6adb088196a7

Fixed ADC bug; added a simple passthrough test
author andrewm
date Fri, 23 Jan 2015 15:17:09 +0000
parents a6beeba3a648
children 901d205d1a3c
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@0 27 #include <rtdk.h>
andrewm@0 28
andrewm@0 29 #include "../include/RTAudio.h"
andrewm@0 30 #include "../include/PRU.h"
andrewm@0 31 #include "../include/I2c_Codec.h"
andrewm@0 32 #include "../include/render.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@0 35 using namespace std;
andrewm@0 36
andrewm@0 37 // Data structure to keep track of auxiliary tasks we
andrewm@0 38 // can schedule
andrewm@0 39 typedef struct {
andrewm@0 40 RT_TASK task;
andrewm@0 41 void (*function)(void);
andrewm@0 42 char *name;
andrewm@0 43 int priority;
andrewm@0 44 } InternalAuxiliaryTask;
andrewm@0 45
andrewm@0 46 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@0 47
andrewm@0 48 // Real-time tasks and objects
andrewm@0 49 RT_TASK gRTAudioThread;
andrewm@0 50 PRU *gPRU = 0;
andrewm@0 51 I2c_Codec *gAudioCodec = 0;
andrewm@0 52
andrewm@0 53 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 54
andrewm@0 55 // Flag which tells the audio task to stop
andrewm@0 56 bool gShouldStop = false;
andrewm@0 57
andrewm@0 58 // general settings
andrewm@0 59 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 60 char gPRUFilename[256] = "pru_rtaudio.bin"; // path to PRU binary file
andrewm@0 61 int gAmplifierMutePin = -1;
andrewm@5 62 int gAmplifierShouldBeginMuted = 0;
andrewm@0 63
andrewm@13 64 // Number of audio and matrix channels, globally accessible
andrewm@13 65 // At least gNumMatrixChannels needs to be global to be used
andrewm@13 66 // by the analogRead() and analogWrite() macros without creating
andrewm@13 67 // extra confusion in their use cases by passing this argument
andrewm@13 68 int gNumAudioChannels = 0;
andrewm@13 69 int gNumMatrixChannels = 0;
andrewm@0 70
andrewm@0 71 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 72 // audio, but does not actually start the calculations.
andrewm@0 73 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 74 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 75 // plus any latency inherent in the ADCs and DACs themselves.
andrewm@12 76 // useMatrix indicates whether to enable the ADC and DAC or just use the audio codec.
andrewm@12 77 // numMatrixChannels indicates how many ADC and DAC channels to use.
andrewm@0 78 // userData is an opaque pointer which will be passed through to the initialise_render()
andrewm@0 79 // function for application-specific use
andrewm@0 80 //
andrewm@0 81 // Returns 0 on success.
andrewm@0 82
andrewm@5 83 int BeagleRT_initAudio(RTAudioSettings *settings, void *userData)
andrewm@0 84 {
andrewm@0 85 rt_print_auto_init(1);
andrewm@5 86 setVerboseLevel(settings->verbose);
andrewm@5 87
andrewm@0 88 if(gRTAudioVerbose == 1)
andrewm@0 89 rt_printf("Running with Xenomai\n");
andrewm@0 90
andrewm@5 91 if(gRTAudioVerbose) {
andrewm@5 92 cout << "Starting with period size " << settings->periodSize << "; ";
andrewm@5 93 if(settings->useMatrix)
andrewm@5 94 cout << "matrix enabled\n";
andrewm@5 95 else
andrewm@5 96 cout << "matrix disabled\n";
andrewm@5 97 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 98 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 99 if(settings->beginMuted)
andrewm@5 100 cout << "Beginning with speaker muted\n";
andrewm@5 101 }
andrewm@0 102
andrewm@0 103 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 104 if(settings->ampMutePin >= 0) {
andrewm@5 105 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 106 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 107
andrewm@5 108 if(gpio_export(settings->ampMutePin)) {
andrewm@0 109 if(gRTAudioVerbose)
andrewm@0 110 cout << "Warning: couldn't export amplifier mute pin\n";
andrewm@0 111 }
andrewm@5 112 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 113 if(gRTAudioVerbose)
andrewm@0 114 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 115 return -1;
andrewm@0 116 }
andrewm@5 117 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 118 if(gRTAudioVerbose)
andrewm@0 119 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 120 return -1;
andrewm@0 121 }
andrewm@0 122 }
andrewm@0 123
andrewm@12 124 // Limit the matrix channels to sane values
andrewm@12 125 if(settings->numMatrixChannels >= 8)
andrewm@12 126 settings->numMatrixChannels = 8;
andrewm@12 127 else if(settings->numMatrixChannels >= 4)
andrewm@12 128 settings->numMatrixChannels = 4;
andrewm@12 129 else
andrewm@12 130 settings->numMatrixChannels = 2;
andrewm@12 131
andrewm@12 132 // Sanity check the combination of channels and period size
andrewm@12 133 if(settings->numMatrixChannels <= 4 && settings->periodSize < 2) {
andrewm@12 134 cout << "Error: " << settings->numMatrixChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 135 return 1;
andrewm@12 136 }
andrewm@12 137 if(settings->numMatrixChannels <= 2 && settings->periodSize < 4) {
andrewm@12 138 cout << "Error: " << settings->numMatrixChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 139 return 1;
andrewm@12 140 }
andrewm@12 141
andrewm@0 142 // Use PRU for audio
andrewm@0 143 gPRU = new PRU();
andrewm@0 144 gAudioCodec = new I2c_Codec();
andrewm@0 145
andrewm@5 146 if(gPRU->prepareGPIO(settings->useMatrix, 1, 1)) {
andrewm@0 147 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 148 return 1;
andrewm@0 149 }
andrewm@12 150 if(gPRU->initialise(0, settings->periodSize, settings->numMatrixChannels, true)) {
andrewm@0 151 cout << "Error: unable to initialise PRU\n";
andrewm@0 152 return 1;
andrewm@0 153 }
andrewm@5 154 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 155 cout << "Unable to open codec I2C\n";
andrewm@0 156 return 1;
andrewm@0 157 }
andrewm@0 158 if(gAudioCodec->initCodec()) {
andrewm@0 159 cout << "Error: unable to initialise audio codec\n";
andrewm@0 160 return 1;
andrewm@0 161 }
andrewm@0 162
andrewm@5 163 // Set default volume levels
andrewm@5 164 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 165 BeagleRT_setADCLevel(settings->adcLevel);
andrewm@5 166 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 167
andrewm@12 168 // Initialise the rendering environment: pass the number of audio and matrix
andrewm@12 169 // channels, the period size for matrix and audio, and the sample rates
andrewm@12 170
andrewm@12 171 int audioPeriodSize = settings->periodSize * 2;
andrewm@12 172 float audioSampleRate = 44100.0;
andrewm@12 173 float matrixSampleRate = 22050.0;
andrewm@12 174 if(settings->useMatrix) {
andrewm@12 175 audioPeriodSize = settings->periodSize * settings->numMatrixChannels / 4;
andrewm@12 176 matrixSampleRate = audioSampleRate * 4.0 / (float)settings->numMatrixChannels;
andrewm@12 177 }
andrewm@12 178
andrewm@13 179 gNumAudioChannels = 2;
andrewm@13 180 gNumMatrixChannels = settings->useMatrix ? settings->numMatrixChannels : 0;
andrewm@13 181
andrewm@13 182 if(!initialise_render(gNumMatrixChannels, gNumAudioChannels,
andrewm@12 183 settings->useMatrix ? settings->periodSize : 0, /* matrix period size */
andrewm@12 184 audioPeriodSize,
andrewm@12 185 matrixSampleRate, audioSampleRate,
andrewm@12 186 userData)) {
andrewm@0 187 cout << "Couldn't initialise audio rendering\n";
andrewm@0 188 return 1;
andrewm@0 189 }
andrewm@0 190
andrewm@0 191 return 0;
andrewm@0 192 }
andrewm@0 193
andrewm@0 194 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 195 // and then transfers control to the PRU object. The PRU object in
andrewm@0 196 // turn will call the audio render() callback function every time
andrewm@0 197 // there is new data to process.
andrewm@0 198
andrewm@0 199 void audioLoop(void *)
andrewm@0 200 {
andrewm@0 201 if(gRTAudioVerbose==1)
andrewm@0 202 rt_printf("_________________Audio Thread!\n");
andrewm@0 203
andrewm@0 204 // PRU audio
andrewm@0 205 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 206
andrewm@0 207 if(gAudioCodec->startAudio(0)) {
andrewm@0 208 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 209 gShouldStop = 1;
andrewm@0 210 }
andrewm@0 211 else {
andrewm@0 212 if(gPRU->start(gPRUFilename)) {
andrewm@0 213 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 214 gShouldStop = 1;
andrewm@0 215 }
andrewm@0 216 else {
andrewm@0 217 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 218
andrewm@5 219 if(!gAmplifierShouldBeginMuted) {
andrewm@5 220 // First unmute the amplifier
andrewm@5 221 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 222 if(gRTAudioVerbose)
andrewm@5 223 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 224 }
andrewm@0 225 }
andrewm@0 226
andrewm@0 227 gPRU->loop();
andrewm@0 228
andrewm@0 229 // Now clean up
andrewm@0 230 // gPRU->waitForFinish();
andrewm@0 231 gPRU->disable();
andrewm@0 232 gAudioCodec->stopAudio();
andrewm@0 233 gPRU->cleanupGPIO();
andrewm@0 234 }
andrewm@0 235 }
andrewm@0 236
andrewm@0 237 if(gRTAudioVerbose == 1)
andrewm@0 238 rt_printf("audio thread ended\n");
andrewm@0 239 }
andrewm@0 240
andrewm@0 241 // Create a calculation loop which can run independently of the audio, at a different
andrewm@0 242 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
andrewm@0 243 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@0 244 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 245 {
andrewm@0 246 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 247
andrewm@0 248 // Attempt to create the task
andrewm@0 249 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 250 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 251 free(newTask);
andrewm@0 252 return 0;
andrewm@0 253 }
andrewm@0 254
andrewm@0 255 // Populate the rest of the data structure and store it in the vector
andrewm@0 256 newTask->function = functionToCall;
andrewm@0 257 newTask->name = strdup(name);
andrewm@0 258 newTask->priority = priority;
andrewm@0 259
andrewm@0 260 gAuxTasks.push_back(newTask);
andrewm@0 261
andrewm@0 262 return (AuxiliaryTask)newTask;
andrewm@0 263 }
andrewm@0 264
andrewm@0 265 // Schedule a previously created auxiliary task. It will run when the priority rules next
andrewm@0 266 // allow it to be scheduled.
andrewm@0 267 void scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 268 {
andrewm@0 269 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
andrewm@0 270
andrewm@0 271 rt_task_resume(&taskToSchedule->task);
andrewm@0 272 }
andrewm@0 273
andrewm@0 274 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 275 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 276 // Treat the argument as containing the task structure
andrewm@0 277 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 278 {
andrewm@0 279 // Get function to call from the argument
andrewm@0 280 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 281 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 282
andrewm@0 283 // Wait for a notification
andrewm@0 284 rt_task_suspend(NULL);
andrewm@0 285
andrewm@0 286 while(!gShouldStop) {
andrewm@0 287 // Then run the calculations
andrewm@0 288 auxiliary_function();
andrewm@0 289
andrewm@0 290 // Wait for a notification
andrewm@0 291 rt_task_suspend(NULL);
andrewm@0 292 }
andrewm@0 293
andrewm@0 294 if(gRTAudioVerbose == 1)
andrewm@0 295 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 296 }
andrewm@0 297
andrewm@0 298 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 299 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 300 // on success.
andrewm@0 301
andrewm@5 302 int BeagleRT_startAudio()
andrewm@0 303 {
andrewm@0 304 // Create audio thread with the highest priority
andrewm@0 305 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
andrewm@0 306 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 307 return -1;
andrewm@0 308 }
andrewm@0 309
andrewm@0 310 // Start all RT threads
andrewm@0 311 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 312 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 313 return -1;
andrewm@0 314 }
andrewm@0 315
andrewm@0 316 // The user may have created other tasks. Start those also.
andrewm@0 317 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 318 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 319 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 320
andrewm@0 321 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
andrewm@0 322 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
andrewm@0 323 return -1;
andrewm@0 324 }
andrewm@0 325 }
andrewm@0 326
andrewm@0 327 return 0;
andrewm@0 328 }
andrewm@0 329
andrewm@0 330 // Stop the PRU-based audio from running and wait
andrewm@0 331 // for the tasks to complete before returning.
andrewm@0 332
andrewm@5 333 void BeagleRT_stopAudio()
andrewm@0 334 {
andrewm@0 335 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 336 gShouldStop = true;
andrewm@0 337
andrewm@5 338 if(gRTAudioVerbose)
andrewm@5 339 cout << "Stopping audio...\n";
andrewm@5 340
andrewm@0 341 // Now wait for threads to respond and actually stop...
andrewm@0 342 rt_task_join(&gRTAudioThread);
andrewm@0 343
andrewm@0 344 // Stop all the auxiliary threads too
andrewm@0 345 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 346 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 347 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 348
andrewm@0 349 // Wake up each thread and join it
andrewm@0 350 rt_task_resume(&(taskStruct->task));
andrewm@0 351 rt_task_join(&(taskStruct->task));
andrewm@0 352 }
andrewm@0 353 }
andrewm@0 354
andrewm@0 355 // Free any resources associated with PRU real-time audio
andrewm@5 356 void BeagleRT_cleanupAudio()
andrewm@0 357 {
andrewm@0 358 cleanup_render();
andrewm@0 359
andrewm@0 360 // Clean up the auxiliary tasks
andrewm@0 361 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 362 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 363 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 364
andrewm@0 365 // Free the name string and the struct itself
andrewm@0 366 free(taskStruct->name);
andrewm@0 367 free(taskStruct);
andrewm@0 368 }
andrewm@0 369 gAuxTasks.clear();
andrewm@0 370
andrewm@0 371 if(gPRU != 0)
andrewm@0 372 delete gPRU;
andrewm@0 373 if(gAudioCodec != 0)
andrewm@0 374 delete gAudioCodec;
andrewm@0 375
andrewm@0 376 if(gAmplifierMutePin >= 0)
andrewm@0 377 gpio_unexport(gAmplifierMutePin);
andrewm@0 378 gAmplifierMutePin = -1;
andrewm@0 379 }
andrewm@0 380
andrewm@5 381 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 382 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 383 int BeagleRT_setDACLevel(float decibels)
andrewm@5 384 {
andrewm@5 385 if(gAudioCodec == 0)
andrewm@5 386 return -1;
andrewm@5 387 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 388 }
andrewm@5 389
andrewm@5 390 // Set the level of the ADC
andrewm@5 391 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 392 int BeagleRT_setADCLevel(float decibels)
andrewm@5 393 {
andrewm@5 394 if(gAudioCodec == 0)
andrewm@5 395 return -1;
andrewm@5 396 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 397 }
andrewm@5 398
andrewm@5 399 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 400 // output only (not line out or speaker)
andrewm@5 401 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 402 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 403 {
andrewm@5 404 if(gAudioCodec == 0)
andrewm@5 405 return -1;
andrewm@5 406 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 407 }
andrewm@5 408
andrewm@5 409 // Mute or unmute the onboard speaker amplifiers
andrewm@5 410 // mute == 0 means unmute; otherwise mute
andrewm@5 411 // Returns 0 on success
andrewm@5 412 int BeagleRT_muteSpeakers(int mute)
andrewm@5 413 {
andrewm@5 414 int pinValue = mute ? LOW : HIGH;
andrewm@5 415
andrewm@5 416 // Check that we have an enabled pin for controlling the mute
andrewm@5 417 if(gAmplifierMutePin < 0)
andrewm@5 418 return -1;
andrewm@5 419
andrewm@5 420 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 421 }
andrewm@5 422
andrewm@0 423 // Set the verbosity level
andrewm@0 424 void setVerboseLevel(int level)
andrewm@0 425 {
andrewm@0 426 gRTAudioVerbose = level;
andrewm@0 427 }