annotate projects/oscillator_bank/render.cpp @ 39:638bc1ae2500 staging

Improved readibility of the DIGITAL code in the PRU, using register names instead of aliases and expanding some of the macros, removing unused macros. Binaries were not modified
author Giulio Moro <giuliomoro@yahoo.it>
date Wed, 13 May 2015 12:18:10 +0100
parents 06f93bef7dd2
children 579c86316008
rev   line source
andrewm@0 1 /*
andrewm@0 2 * render.cpp
andrewm@0 3 *
andrewm@0 4 * Created on: Oct 24, 2014
andrewm@0 5 * Author: parallels
andrewm@0 6 */
andrewm@0 7
andrewm@0 8
andrewm@0 9 #include "../../include/RTAudio.h"
andrewm@0 10 #include "../../include/Utilities.h"
andrewm@0 11 #include <rtdk.h>
andrewm@0 12 #include <cstdlib>
andrewm@0 13 #include <cmath>
andrewm@0 14 #include <cstring>
andrewm@0 15 #include <time.h>
andrewm@0 16
andrewm@0 17 const float kMinimumFrequency = 20.0f;
andrewm@0 18 const float kMaximumFrequency = 8000.0f;
andrewm@0 19
andrewm@0 20 float *gWavetable; // Buffer holding the precalculated sine lookup table
andrewm@0 21 float *gPhases; // Buffer holding the phase of each oscillator
andrewm@0 22 float *gFrequencies; // Buffer holding the frequencies of each oscillator
andrewm@0 23 float *gAmplitudes; // Buffer holding the amplitudes of each oscillator
andrewm@0 24 float *gDFrequencies; // Buffer holding the derivatives of frequency
andrewm@0 25 float *gDAmplitudes; // Buffer holding the derivatives of amplitude
andrewm@0 26
andrewm@0 27 float gAudioSampleRate;
andrewm@0 28 int gSampleCount; // Sample counter for indicating when to update frequencies
andrewm@0 29 float gNewMinFrequency;
andrewm@0 30 float gNewMaxFrequency;
andrewm@0 31
andrewm@0 32 // Task for handling the update of the frequencies using the matrix
andrewm@0 33 AuxiliaryTask gFrequencyUpdateTask;
andrewm@0 34
andrewm@0 35 // These settings are carried over from main.cpp
andrewm@0 36 // Setting global variables is an alternative approach
andrewm@0 37 // to passing a structure to userData in initialise_render()
andrewm@0 38
andrewm@0 39 extern int gNumOscillators;
andrewm@0 40 extern int gWavetableLength;
andrewm@0 41
andrewm@0 42 void recalculate_frequencies();
andrewm@0 43
andrewm@0 44 extern "C" {
andrewm@0 45 // Function prototype for ARM assembly implementation of oscillator bank
andrewm@0 46 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
andrewm@0 47 int activePartialNum, int lookupTableSize,
andrewm@0 48 float *phases, float *frequencies, float *amplitudes,
andrewm@0 49 float *freqDerivatives, float *ampDerivatives,
andrewm@0 50 float *lookupTable);
andrewm@0 51 }
andrewm@0 52
andrewm@0 53 // initialise_render() is called once before the audio rendering starts.
andrewm@0 54 // Use it to perform any initialisation and allocation which is dependent
andrewm@0 55 // on the period size or sample rate.
andrewm@0 56 //
andrewm@0 57 // userData holds an opaque pointer to a data structure that was passed
andrewm@0 58 // in from the call to initAudio().
andrewm@0 59 //
andrewm@0 60 // Return true on success; returning false halts the program.
andrewm@14 61 bool initialise_render(int numMatrixChannels, int numAudioChannels,
andrewm@14 62 int numMatrixFramesPerPeriod,
andrewm@14 63 int numAudioFramesPerPeriod,
andrewm@14 64 float matrixSampleRate, float audioSampleRate,
andrewm@14 65 void *userData)
andrewm@0 66 {
andrewm@0 67 srandom(time(NULL));
andrewm@0 68
andrewm@14 69 if(numAudioChannels != 2) {
andrewm@14 70 rt_printf("Error: this example needs stereo audio enabled\n");
andrewm@14 71 return false;
andrewm@14 72 }
andrewm@14 73
andrewm@0 74 // Initialise the sine wavetable
andrewm@0 75 if(posix_memalign((void **)&gWavetable, 8, (gWavetableLength + 1) * sizeof(float))) {
andrewm@0 76 rt_printf("Error allocating wavetable\n");
andrewm@0 77 return false;
andrewm@0 78 }
andrewm@0 79 for(int n = 0; n < gWavetableLength + 1; n++)
andrewm@0 80 gWavetable[n] = sinf(2.0 * M_PI * (float)n / (float)gWavetableLength);
andrewm@0 81
andrewm@0 82 // Allocate the other buffers
andrewm@0 83 if(posix_memalign((void **)&gPhases, 16, gNumOscillators * sizeof(float))) {
andrewm@0 84 rt_printf("Error allocating phase buffer\n");
andrewm@0 85 return false;
andrewm@0 86 }
andrewm@0 87 if(posix_memalign((void **)&gFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 88 rt_printf("Error allocating frequency buffer\n");
andrewm@0 89 return false;
andrewm@0 90 }
andrewm@0 91 if(posix_memalign((void **)&gAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 92 rt_printf("Error allocating amplitude buffer\n");
andrewm@0 93 return false;
andrewm@0 94 }
andrewm@0 95 if(posix_memalign((void **)&gDFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 96 rt_printf("Error allocating frequency derivative buffer\n");
andrewm@0 97 return false;
andrewm@0 98 }
andrewm@0 99 if(posix_memalign((void **)&gDAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 100 rt_printf("Error allocating amplitude derivative buffer\n");
andrewm@0 101 return false;
andrewm@0 102 }
andrewm@0 103
andrewm@0 104 // Initialise buffer contents
andrewm@0 105
andrewm@0 106 float freq = kMinimumFrequency;
andrewm@0 107 float increment = (kMaximumFrequency - kMinimumFrequency) / (float)gNumOscillators;
andrewm@0 108
andrewm@0 109 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 110 gPhases[n] = 0.0;
andrewm@0 111
andrewm@0 112 if(numMatrixFramesPerPeriod == 0) {
andrewm@0 113 // Random frequencies when used without matrix
andrewm@0 114 gFrequencies[n] = kMinimumFrequency + (kMaximumFrequency - kMinimumFrequency) * ((float)random() / (float)RAND_MAX);
andrewm@0 115 }
andrewm@0 116 else {
andrewm@0 117 // Constant spread of frequencies when used with matrix
andrewm@0 118 gFrequencies[n] = freq;
andrewm@0 119 freq += increment;
andrewm@0 120 }
andrewm@0 121
andrewm@0 122 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@0 123 gFrequencies[n] *= (float)gWavetableLength / audioSampleRate;
andrewm@0 124 gAmplitudes[n] = ((float)random() / (float)RAND_MAX) / (float)gNumOscillators;
andrewm@0 125 gDFrequencies[n] = gDAmplitudes[n] = 0.0;
andrewm@0 126 }
andrewm@0 127
andrewm@0 128 // Initialise auxiliary tasks
andrewm@0 129 if((gFrequencyUpdateTask = createAuxiliaryTaskLoop(&recalculate_frequencies, 90, "beaglert-update-frequencies")) == 0)
andrewm@0 130 return false;
andrewm@0 131
andrewm@0 132 gAudioSampleRate = audioSampleRate;
andrewm@0 133 gSampleCount = 0;
andrewm@0 134
andrewm@0 135 return true;
andrewm@0 136 }
andrewm@0 137
andrewm@0 138 // render() is called regularly at the highest priority by the audio engine.
andrewm@0 139 // Input and output are given from the audio hardware and the other
andrewm@0 140 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
andrewm@0 141 // will be 0.
andrewm@0 142
andrewm@0 143 void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
andrewm@0 144 uint16_t *matrixIn, uint16_t *matrixOut)
andrewm@0 145 {
andrewm@0 146 // Initialise buffer to 0
andrewm@0 147 memset(audioOut, 0, 2 * numAudioFrames * sizeof(float));
andrewm@0 148
andrewm@0 149 // Render audio frames
andrewm@0 150 oscillator_bank_neon(numAudioFrames, audioOut,
andrewm@0 151 gNumOscillators, gWavetableLength,
andrewm@0 152 gPhases, gFrequencies, gAmplitudes,
andrewm@0 153 gDFrequencies, gDAmplitudes,
andrewm@0 154 gWavetable);
andrewm@0 155
andrewm@0 156 if(numMatrixFrames != 0 && (gSampleCount += numAudioFrames) >= 128) {
andrewm@0 157 gSampleCount = 0;
andrewm@0 158 gNewMinFrequency = map(matrixIn[0], 0, MATRIX_MAX, 20.0f, 8000.0f);
andrewm@0 159 gNewMaxFrequency = map(matrixIn[1], 0, MATRIX_MAX, 20.0f, 8000.0f);
andrewm@0 160
andrewm@0 161 // Make sure max >= min
andrewm@0 162 if(gNewMaxFrequency < gNewMinFrequency) {
andrewm@0 163 float temp = gNewMaxFrequency;
andrewm@0 164 gNewMaxFrequency = gNewMinFrequency;
andrewm@0 165 gNewMinFrequency = temp;
andrewm@0 166 }
andrewm@0 167
andrewm@0 168 // Request that the lower-priority task run at next opportunity
andrewm@0 169 scheduleAuxiliaryTask(gFrequencyUpdateTask);
andrewm@0 170 }
andrewm@0 171 }
andrewm@0 172
andrewm@0 173 // This is a lower-priority call to update the frequencies which will happen
andrewm@0 174 // periodically when the matrix is enabled. By placing it at a lower priority,
andrewm@0 175 // it has minimal effect on the audio performance but it will take longer to
andrewm@0 176 // complete if the system is under heavy audio load.
andrewm@0 177
andrewm@0 178 void recalculate_frequencies()
andrewm@0 179 {
andrewm@0 180 float freq = gNewMinFrequency;
andrewm@0 181 float increment = (gNewMaxFrequency - gNewMinFrequency) / (float)gNumOscillators;
andrewm@0 182
andrewm@0 183 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 184 // Update the frequencies to a regular spread, plus a small amount of randomness
andrewm@0 185 // to avoid weird phase effects
andrewm@0 186 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
andrewm@0 187 float newFreq = freq * randScale;
andrewm@0 188
andrewm@0 189 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@0 190 gFrequencies[n] = newFreq * (float)gWavetableLength / gAudioSampleRate;
andrewm@0 191
andrewm@0 192 freq += increment;
andrewm@0 193 }
andrewm@0 194 }
andrewm@0 195
andrewm@0 196
andrewm@0 197 // cleanup_render() is called once at the end, after the audio has stopped.
andrewm@0 198 // Release any resources that were allocated in initialise_render().
andrewm@0 199
andrewm@0 200 void cleanup_render()
andrewm@0 201 {
andrewm@0 202 free(gWavetable);
andrewm@0 203 free(gPhases);
andrewm@0 204 free(gFrequencies);
andrewm@0 205 free(gAmplitudes);
andrewm@0 206 free(gDFrequencies);
andrewm@0 207 free(gDAmplitudes);
andrewm@0 208 }