chris@160
|
1 /**
|
chris@160
|
2 * Copyright (c) 2014, 2015, Enzien Audio Ltd.
|
chris@160
|
3 *
|
chris@160
|
4 * Permission to use, copy, modify, and/or distribute this software for any
|
chris@160
|
5 * purpose with or without fee is hereby granted, provided that the above
|
chris@160
|
6 * copyright notice and this permission notice appear in all copies.
|
chris@160
|
7 *
|
chris@160
|
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
chris@160
|
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
|
chris@160
|
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
chris@160
|
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
chris@160
|
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
|
chris@160
|
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
chris@160
|
14 * PERFORMANCE OF THIS SOFTWARE.
|
chris@160
|
15 */
|
chris@160
|
16
|
chris@160
|
17 #ifndef _HEAVY_SIGNAL_PHASOR_H_
|
chris@160
|
18 #define _HEAVY_SIGNAL_PHASOR_H_
|
chris@160
|
19
|
chris@160
|
20 #include "HvBase.h"
|
chris@160
|
21
|
chris@160
|
22 typedef struct SignalPhasor {
|
chris@160
|
23 #if HV_SIMD_AVX
|
chris@160
|
24 __m256 phase; // current phase
|
chris@160
|
25 __m256 inc; // phase increment
|
chris@160
|
26 #elif HV_SIMD_SSE
|
chris@160
|
27 __m128i phase;
|
chris@160
|
28 __m128i inc;
|
chris@160
|
29 #elif HV_SIMD_NEON
|
chris@160
|
30 uint32x4_t phase;
|
chris@160
|
31 int32x4_t inc;
|
chris@160
|
32 #else // HV_SIMD_NONE
|
chris@160
|
33 hv_uint32_t phase;
|
chris@160
|
34 hv_int32_t inc;
|
chris@160
|
35 #endif
|
chris@160
|
36 union {
|
chris@160
|
37 float f2sc; // float to step conversion (used for __phasor~f)
|
chris@160
|
38 hv_int32_t s; // step value (used for __phasor_k~f)
|
chris@160
|
39 } step;
|
chris@160
|
40 } SignalPhasor;
|
chris@160
|
41
|
chris@160
|
42 hv_size_t sPhasor_init(SignalPhasor *o, double samplerate);
|
chris@160
|
43
|
chris@160
|
44 hv_size_t sPhasor_k_init(SignalPhasor *o, float frequency, double samplerate);
|
chris@160
|
45
|
chris@160
|
46 void sPhasor_k_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m);
|
chris@160
|
47
|
chris@160
|
48 void sPhasor_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m);
|
chris@160
|
49
|
chris@160
|
50 static inline void __hv_phasor_f(SignalPhasor *o, hv_bInf_t bIn, hv_bOutf_t bOut) {
|
chris@160
|
51 #if HV_SIMD_AVX
|
chris@160
|
52 __m256 p = _mm256_mul_ps(bIn, _mm256_set1_ps(o->step.f2sc)); // a b c d e f g h
|
chris@160
|
53
|
chris@160
|
54 __m256 z = _mm256_setzero_ps();
|
chris@160
|
55
|
chris@160
|
56 // http://stackoverflow.com/questions/11906814/how-to-rotate-an-sse-avx-vector
|
chris@160
|
57 __m256 a = _mm256_permute_ps(p, _MM_SHUFFLE(2,1,0,3)); // d a b c h e f g
|
chris@160
|
58 __m256 b = _mm256_permute2f128_ps(a, a, 0x01); // h e f g d a b c
|
chris@160
|
59 __m256 c = _mm256_blend_ps(a, b, 0x10); // d a b c d e f g
|
chris@160
|
60 __m256 d = _mm256_blend_ps(c, z, 0x01); // 0 a b c d e f g
|
chris@160
|
61 __m256 e = _mm256_add_ps(p, d); // a (a+b) (b+c) (c+d) (d+e) (e+f) (f+g) (g+h)
|
chris@160
|
62
|
chris@160
|
63 __m256 f = _mm256_permute_ps(e, _MM_SHUFFLE(1,0,3,2)); // (b+c) (c+d) a (a+b) (f+g) (g+h) (d+e) (e+f)
|
chris@160
|
64 __m256 g = _mm256_permute2f128_ps(f, f, 0x01); // (f+g) (g+h) (d+e) (e+f) (b+c) (c+d) a (a+b)
|
chris@160
|
65 __m256 h = _mm256_blend_ps(f, g, 0x33); // (b+c) (c+d) a (a+b) (b+c) (c+d) (d+e) (e+f)
|
chris@160
|
66 __m256 i = _mm256_blend_ps(h, z, 0x03); // 0 0 a (a+b) (b+c) (c+d) (d+e) (e+f)
|
chris@160
|
67 __m256 j = _mm256_add_ps(e, i); // a (a+b) (a+b+c) (a+b+c+d) (b+c+d+e) (c+d+e+f) (d+e+f+g) (e+f+g+h)
|
chris@160
|
68
|
chris@160
|
69 __m256 k = _mm256_permute2f128_ps(j, z, 0x02); // 0 0 0 0 a (a+b) (a+b+c) (a+b+c+d) (b+c+d+e)
|
chris@160
|
70 __m256 m = _mm256_add_ps(j, k); // a (a+b) (a+b+c) (a+b+c+d) (a+b+c+d+e) (a+b+c+d+e+f) (a+b+c+d+e+f+g) (a+b+c+d+e+f+g+h)
|
chris@160
|
71
|
chris@160
|
72 __m256 n = _mm256_or_ps(_mm256_andnot_ps(
|
chris@160
|
73 _mm256_set1_ps(-INFINITY),
|
chris@160
|
74 _mm256_add_ps(o->phase, m)),
|
chris@160
|
75 _mm256_set1_ps(1.0f));
|
chris@160
|
76
|
chris@160
|
77 *bOut = _mm256_sub_ps(n, _mm256_set1_ps(1.0f));
|
chris@160
|
78
|
chris@160
|
79 __m256 x = _mm256_permute_ps(n, _MM_SHUFFLE(3,3,3,3));
|
chris@160
|
80 o->phase = _mm256_permute2f128_ps(x, x, 0x11);
|
chris@160
|
81 #elif HV_SIMD_SSE
|
chris@160
|
82 __m128i p = _mm_cvtps_epi32(_mm_mul_ps(bIn, _mm_set1_ps(o->step.f2sc))); // convert frequency to step
|
chris@160
|
83 p = _mm_add_epi32(p, _mm_slli_si128(p, 4)); // add incremental steps to phase (prefix sum)
|
chris@160
|
84 p = _mm_add_epi32(p, _mm_slli_si128(p, 8)); // http://stackoverflow.com/questions/10587598/simd-prefix-sum-on-intel-cpu?rq=1
|
chris@160
|
85 p = _mm_add_epi32(o->phase, p);
|
chris@160
|
86 *bOut = _mm_sub_ps(_mm_castsi128_ps(
|
chris@160
|
87 _mm_or_si128(_mm_srli_epi32(p, 9),
|
chris@160
|
88 (__m128i) {0x3F8000003F800000L, 0x3F8000003F800000L})),
|
chris@160
|
89 _mm_set1_ps(1.0f));
|
chris@160
|
90 o->phase = _mm_shuffle_epi32(p, _MM_SHUFFLE(3,3,3,3));
|
chris@160
|
91 #elif HV_SIMD_NEON
|
chris@160
|
92 int32x4_t p = vcvtq_s32_f32(vmulq_n_f32(bIn, o->step.f2sc));
|
chris@160
|
93 p = vaddq_s32(p, vextq_s32(vdupq_n_s32(0), p, 3)); // http://stackoverflow.com/questions/11259596/arm-neon-intrinsics-rotation
|
chris@160
|
94 p = vaddq_s32(p, vextq_s32(vdupq_n_s32(0), p, 2));
|
chris@160
|
95 uint32x4_t pp = vaddq_u32(o->phase, vreinterpretq_u32_s32(p));
|
chris@160
|
96 *bOut = vsubq_f32(vreinterpretq_f32_u32(vorrq_u32(vshrq_n_u32(pp, 9), vdupq_n_u32(0x3F800000))), vdupq_n_f32(1.0f));
|
chris@160
|
97 o->phase = vdupq_n_u32(pp[3]);
|
chris@160
|
98 #else // HV_SIMD_NONE
|
chris@160
|
99 const hv_uint32_t p = (o->phase >> 9) | 0x3F800000;
|
chris@160
|
100 *bOut = *((float *) (&p)) - 1.0f;
|
chris@160
|
101 o->phase += ((int) (bIn * o->step.f2sc));
|
chris@160
|
102 #endif
|
chris@160
|
103 }
|
chris@160
|
104
|
chris@160
|
105 static inline void __hv_phasor_k_f(SignalPhasor *o, hv_bOutf_t bOut) {
|
chris@160
|
106 #if HV_SIMD_AVX
|
chris@160
|
107 *bOut = _mm256_sub_ps(o->phase, _mm256_set1_ps(1.0f));
|
chris@160
|
108 o->phase = _mm256_or_ps(_mm256_andnot_ps(
|
chris@160
|
109 _mm256_set1_ps(-INFINITY),
|
chris@160
|
110 _mm256_add_ps(o->phase, o->inc)),
|
chris@160
|
111 _mm256_set1_ps(1.0f));
|
chris@160
|
112 #elif HV_SIMD_SSE
|
chris@160
|
113 *bOut = _mm_sub_ps(_mm_castsi128_ps(
|
chris@160
|
114 _mm_or_si128(_mm_srli_epi32(o->phase, 9),
|
chris@160
|
115 (__m128i) {0x3F8000003F800000L, 0x3F8000003F800000L})),
|
chris@160
|
116 _mm_set1_ps(1.0f));
|
chris@160
|
117 o->phase = _mm_add_epi32(o->phase, o->inc);
|
chris@160
|
118 #elif HV_SIMD_NEON
|
chris@160
|
119 *bOut = vsubq_f32(vreinterpretq_f32_u32(
|
chris@160
|
120 vorrq_u32(vshrq_n_u32(o->phase, 9),
|
chris@160
|
121 vdupq_n_u32(0x3F800000))),
|
chris@160
|
122 vdupq_n_f32(1.0f));
|
chris@160
|
123 o->phase = vaddq_u32(o->phase, vreinterpretq_u32_s32(o->inc));
|
chris@160
|
124 #else // HV_SIMD_NONE
|
chris@160
|
125 const hv_uint32_t p = (o->phase >> 9) | 0x3F800000;
|
chris@160
|
126 *bOut = *((float *) (&p)) - 1.0f;
|
chris@160
|
127 o->phase += o->inc;
|
chris@160
|
128 #endif
|
chris@160
|
129 }
|
chris@160
|
130
|
chris@160
|
131 #endif // _HEAVY_SIGNAL_PHASOR_H_
|