andrewm@0
|
1 /*
|
andrewm@0
|
2 * render.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Created on: Oct 24, 2014
|
andrewm@0
|
5 * Author: parallels
|
andrewm@0
|
6 */
|
andrewm@0
|
7
|
andrewm@0
|
8
|
andrewm@0
|
9 #include "../../include/RTAudio.h"
|
andrewm@0
|
10 #include "../../include/Utilities.h"
|
andrewm@0
|
11 #include <rtdk.h>
|
andrewm@0
|
12 #include <cstdlib>
|
andrewm@0
|
13 #include <cmath>
|
andrewm@0
|
14 #include <cstring>
|
andrewm@0
|
15 #include <time.h>
|
andrewm@0
|
16
|
andrewm@0
|
17 const float kMinimumFrequency = 20.0f;
|
andrewm@0
|
18 const float kMaximumFrequency = 8000.0f;
|
andrewm@0
|
19
|
andrewm@0
|
20 float *gWavetable; // Buffer holding the precalculated sine lookup table
|
andrewm@0
|
21 float *gPhases; // Buffer holding the phase of each oscillator
|
andrewm@0
|
22 float *gFrequencies; // Buffer holding the frequencies of each oscillator
|
andrewm@0
|
23 float *gAmplitudes; // Buffer holding the amplitudes of each oscillator
|
andrewm@0
|
24 float *gDFrequencies; // Buffer holding the derivatives of frequency
|
andrewm@0
|
25 float *gDAmplitudes; // Buffer holding the derivatives of amplitude
|
andrewm@0
|
26
|
andrewm@0
|
27 float gAudioSampleRate;
|
andrewm@0
|
28 int gSampleCount; // Sample counter for indicating when to update frequencies
|
andrewm@0
|
29 float gNewMinFrequency;
|
andrewm@0
|
30 float gNewMaxFrequency;
|
andrewm@0
|
31
|
andrewm@0
|
32 // Task for handling the update of the frequencies using the matrix
|
andrewm@0
|
33 AuxiliaryTask gFrequencyUpdateTask;
|
andrewm@0
|
34
|
andrewm@0
|
35 // These settings are carried over from main.cpp
|
andrewm@0
|
36 // Setting global variables is an alternative approach
|
andrewm@0
|
37 // to passing a structure to userData in initialise_render()
|
andrewm@0
|
38
|
andrewm@0
|
39 extern int gNumOscillators;
|
andrewm@0
|
40 extern int gWavetableLength;
|
andrewm@0
|
41
|
andrewm@0
|
42 void recalculate_frequencies();
|
andrewm@0
|
43
|
andrewm@0
|
44 extern "C" {
|
andrewm@0
|
45 // Function prototype for ARM assembly implementation of oscillator bank
|
andrewm@0
|
46 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
|
andrewm@0
|
47 int activePartialNum, int lookupTableSize,
|
andrewm@0
|
48 float *phases, float *frequencies, float *amplitudes,
|
andrewm@0
|
49 float *freqDerivatives, float *ampDerivatives,
|
andrewm@0
|
50 float *lookupTable);
|
andrewm@0
|
51 }
|
andrewm@0
|
52
|
andrewm@0
|
53 // initialise_render() is called once before the audio rendering starts.
|
andrewm@0
|
54 // Use it to perform any initialisation and allocation which is dependent
|
andrewm@0
|
55 // on the period size or sample rate.
|
andrewm@0
|
56 //
|
andrewm@0
|
57 // userData holds an opaque pointer to a data structure that was passed
|
andrewm@0
|
58 // in from the call to initAudio().
|
andrewm@0
|
59 //
|
andrewm@0
|
60 // Return true on success; returning false halts the program.
|
andrewm@45
|
61 bool initialise_render(int numMatrixChannels, int numDigitalChannels, int numAudioChannels,
|
andrewm@14
|
62 int numMatrixFramesPerPeriod,
|
andrewm@14
|
63 int numAudioFramesPerPeriod,
|
andrewm@14
|
64 float matrixSampleRate, float audioSampleRate,
|
andrewm@45
|
65 void *userData, RTAudioSettings* settings)
|
andrewm@0
|
66 {
|
andrewm@0
|
67 srandom(time(NULL));
|
andrewm@0
|
68
|
andrewm@14
|
69 if(numAudioChannels != 2) {
|
andrewm@14
|
70 rt_printf("Error: this example needs stereo audio enabled\n");
|
andrewm@14
|
71 return false;
|
andrewm@14
|
72 }
|
andrewm@14
|
73
|
andrewm@0
|
74 // Initialise the sine wavetable
|
andrewm@0
|
75 if(posix_memalign((void **)&gWavetable, 8, (gWavetableLength + 1) * sizeof(float))) {
|
andrewm@0
|
76 rt_printf("Error allocating wavetable\n");
|
andrewm@0
|
77 return false;
|
andrewm@0
|
78 }
|
andrewm@0
|
79 for(int n = 0; n < gWavetableLength + 1; n++)
|
andrewm@0
|
80 gWavetable[n] = sinf(2.0 * M_PI * (float)n / (float)gWavetableLength);
|
andrewm@0
|
81
|
andrewm@0
|
82 // Allocate the other buffers
|
andrewm@0
|
83 if(posix_memalign((void **)&gPhases, 16, gNumOscillators * sizeof(float))) {
|
andrewm@0
|
84 rt_printf("Error allocating phase buffer\n");
|
andrewm@0
|
85 return false;
|
andrewm@0
|
86 }
|
andrewm@0
|
87 if(posix_memalign((void **)&gFrequencies, 16, gNumOscillators * sizeof(float))) {
|
andrewm@0
|
88 rt_printf("Error allocating frequency buffer\n");
|
andrewm@0
|
89 return false;
|
andrewm@0
|
90 }
|
andrewm@0
|
91 if(posix_memalign((void **)&gAmplitudes, 16, gNumOscillators * sizeof(float))) {
|
andrewm@0
|
92 rt_printf("Error allocating amplitude buffer\n");
|
andrewm@0
|
93 return false;
|
andrewm@0
|
94 }
|
andrewm@0
|
95 if(posix_memalign((void **)&gDFrequencies, 16, gNumOscillators * sizeof(float))) {
|
andrewm@0
|
96 rt_printf("Error allocating frequency derivative buffer\n");
|
andrewm@0
|
97 return false;
|
andrewm@0
|
98 }
|
andrewm@0
|
99 if(posix_memalign((void **)&gDAmplitudes, 16, gNumOscillators * sizeof(float))) {
|
andrewm@0
|
100 rt_printf("Error allocating amplitude derivative buffer\n");
|
andrewm@0
|
101 return false;
|
andrewm@0
|
102 }
|
andrewm@0
|
103
|
andrewm@0
|
104 // Initialise buffer contents
|
andrewm@0
|
105
|
andrewm@0
|
106 float freq = kMinimumFrequency;
|
andrewm@0
|
107 float increment = (kMaximumFrequency - kMinimumFrequency) / (float)gNumOscillators;
|
andrewm@0
|
108
|
andrewm@0
|
109 for(int n = 0; n < gNumOscillators; n++) {
|
andrewm@0
|
110 gPhases[n] = 0.0;
|
andrewm@0
|
111
|
andrewm@0
|
112 if(numMatrixFramesPerPeriod == 0) {
|
andrewm@0
|
113 // Random frequencies when used without matrix
|
andrewm@0
|
114 gFrequencies[n] = kMinimumFrequency + (kMaximumFrequency - kMinimumFrequency) * ((float)random() / (float)RAND_MAX);
|
andrewm@0
|
115 }
|
andrewm@0
|
116 else {
|
andrewm@0
|
117 // Constant spread of frequencies when used with matrix
|
andrewm@0
|
118 gFrequencies[n] = freq;
|
andrewm@0
|
119 freq += increment;
|
andrewm@0
|
120 }
|
andrewm@0
|
121
|
andrewm@0
|
122 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
|
andrewm@0
|
123 gFrequencies[n] *= (float)gWavetableLength / audioSampleRate;
|
andrewm@0
|
124 gAmplitudes[n] = ((float)random() / (float)RAND_MAX) / (float)gNumOscillators;
|
andrewm@0
|
125 gDFrequencies[n] = gDAmplitudes[n] = 0.0;
|
andrewm@0
|
126 }
|
andrewm@0
|
127
|
andrewm@45
|
128 increment = 0;
|
andrewm@45
|
129 freq = 440.0;
|
andrewm@45
|
130
|
andrewm@45
|
131 for(int n = 0; n < gNumOscillators; n++) {
|
andrewm@45
|
132 // Update the frequencies to a regular spread, plus a small amount of randomness
|
andrewm@45
|
133 // to avoid weird phase effects
|
andrewm@45
|
134 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
|
andrewm@45
|
135 float newFreq = freq * randScale;
|
andrewm@45
|
136
|
andrewm@45
|
137 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
|
andrewm@45
|
138 gFrequencies[n] = newFreq * (float)gWavetableLength / audioSampleRate;
|
andrewm@45
|
139
|
andrewm@45
|
140 freq += increment;
|
andrewm@45
|
141 }
|
andrewm@45
|
142
|
andrewm@0
|
143 // Initialise auxiliary tasks
|
andrewm@0
|
144 if((gFrequencyUpdateTask = createAuxiliaryTaskLoop(&recalculate_frequencies, 90, "beaglert-update-frequencies")) == 0)
|
andrewm@0
|
145 return false;
|
andrewm@0
|
146
|
andrewm@45
|
147 for(int n = 0; n < gNumOscillators; n++)
|
andrewm@45
|
148 rt_printf("%f\n", gFrequencies[n]);
|
andrewm@45
|
149
|
andrewm@0
|
150 gAudioSampleRate = audioSampleRate;
|
andrewm@0
|
151 gSampleCount = 0;
|
andrewm@0
|
152
|
andrewm@0
|
153 return true;
|
andrewm@0
|
154 }
|
andrewm@0
|
155
|
andrewm@0
|
156 // render() is called regularly at the highest priority by the audio engine.
|
andrewm@0
|
157 // Input and output are given from the audio hardware and the other
|
andrewm@0
|
158 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
|
andrewm@0
|
159 // will be 0.
|
andrewm@0
|
160
|
andrewm@45
|
161 void render(int numAnalogFrames, int numAudioFrames, int numDigitalFrames, float *audioIn, float *audioOut,
|
andrewm@45
|
162 float *analogIn, float *analogOut, uint32_t *digital)
|
andrewm@0
|
163 {
|
andrewm@0
|
164 // Initialise buffer to 0
|
andrewm@0
|
165 memset(audioOut, 0, 2 * numAudioFrames * sizeof(float));
|
andrewm@0
|
166
|
andrewm@0
|
167 // Render audio frames
|
andrewm@0
|
168 oscillator_bank_neon(numAudioFrames, audioOut,
|
andrewm@0
|
169 gNumOscillators, gWavetableLength,
|
andrewm@0
|
170 gPhases, gFrequencies, gAmplitudes,
|
andrewm@0
|
171 gDFrequencies, gDAmplitudes,
|
andrewm@0
|
172 gWavetable);
|
andrewm@0
|
173
|
andrewm@45
|
174 if(numAnalogFrames != 0 && (gSampleCount += numAudioFrames) >= 128) {
|
andrewm@0
|
175 gSampleCount = 0;
|
andrewm@45
|
176 gNewMinFrequency = map(analogIn[0], 0, 1.0, 1000.0f, 8000.0f);
|
andrewm@45
|
177 gNewMaxFrequency = map(analogIn[1], 0, 1.0, 1000.0f, 8000.0f);
|
andrewm@0
|
178
|
andrewm@0
|
179 // Make sure max >= min
|
andrewm@0
|
180 if(gNewMaxFrequency < gNewMinFrequency) {
|
andrewm@0
|
181 float temp = gNewMaxFrequency;
|
andrewm@0
|
182 gNewMaxFrequency = gNewMinFrequency;
|
andrewm@0
|
183 gNewMinFrequency = temp;
|
andrewm@0
|
184 }
|
andrewm@0
|
185
|
andrewm@0
|
186 // Request that the lower-priority task run at next opportunity
|
andrewm@45
|
187 //scheduleAuxiliaryTask(gFrequencyUpdateTask);
|
andrewm@0
|
188 }
|
andrewm@0
|
189 }
|
andrewm@0
|
190
|
andrewm@0
|
191 // This is a lower-priority call to update the frequencies which will happen
|
andrewm@0
|
192 // periodically when the matrix is enabled. By placing it at a lower priority,
|
andrewm@0
|
193 // it has minimal effect on the audio performance but it will take longer to
|
andrewm@0
|
194 // complete if the system is under heavy audio load.
|
andrewm@0
|
195
|
andrewm@0
|
196 void recalculate_frequencies()
|
andrewm@0
|
197 {
|
andrewm@0
|
198 float freq = gNewMinFrequency;
|
andrewm@0
|
199 float increment = (gNewMaxFrequency - gNewMinFrequency) / (float)gNumOscillators;
|
andrewm@0
|
200
|
andrewm@0
|
201 for(int n = 0; n < gNumOscillators; n++) {
|
andrewm@0
|
202 // Update the frequencies to a regular spread, plus a small amount of randomness
|
andrewm@0
|
203 // to avoid weird phase effects
|
andrewm@0
|
204 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
|
andrewm@0
|
205 float newFreq = freq * randScale;
|
andrewm@0
|
206
|
andrewm@0
|
207 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
|
andrewm@0
|
208 gFrequencies[n] = newFreq * (float)gWavetableLength / gAudioSampleRate;
|
andrewm@0
|
209
|
andrewm@0
|
210 freq += increment;
|
andrewm@0
|
211 }
|
andrewm@0
|
212 }
|
andrewm@0
|
213
|
andrewm@0
|
214
|
andrewm@0
|
215 // cleanup_render() is called once at the end, after the audio has stopped.
|
andrewm@0
|
216 // Release any resources that were allocated in initialise_render().
|
andrewm@0
|
217
|
andrewm@0
|
218 void cleanup_render()
|
andrewm@0
|
219 {
|
andrewm@0
|
220 free(gWavetable);
|
andrewm@0
|
221 free(gPhases);
|
andrewm@0
|
222 free(gFrequencies);
|
andrewm@0
|
223 free(gAmplitudes);
|
andrewm@0
|
224 free(gDFrequencies);
|
andrewm@0
|
225 free(gDAmplitudes);
|
andrewm@0
|
226 }
|