annotate examples/oscillator_bank/render.cpp @ 419:4fb06ca94e02 prerelease

Unconditionally restarting IDE after update_board.sh
author Giulio Moro <giuliomoro@yahoo.it>
date Thu, 16 Jun 2016 03:42:10 +0100
parents 9dc5a0ccad25
children
rev   line source
robert@372 1 /*
robert@372 2 ____ _____ _ _
robert@372 3 | __ )| ____| | / \
robert@372 4 | _ \| _| | | / _ \
robert@372 5 | |_) | |___| |___ / ___ \
robert@372 6 |____/|_____|_____/_/ \_\.io
robert@372 7
robert@372 8 */
robert@372 9
andrewm@0 10 /*
andrewm@0 11 * render.cpp
andrewm@0 12 *
andrewm@0 13 * Created on: Oct 24, 2014
andrewm@0 14 * Author: parallels
andrewm@0 15 */
andrewm@0 16
robert@372 17 /**
robert@372 18 \example 4_oscillator_bank
robert@372 19
robert@372 20 Oscillator Bank
robert@372 21 ----------------------
robert@372 22
robert@372 23 These files demonstrate an oscillator bank implemented in assembly code
robert@372 24 that is used as part of the d-box project.
robert@372 25 */
andrewm@0 26
giuliomoro@301 27 #include <Bela.h>
andrewm@0 28 #include <rtdk.h>
andrewm@0 29 #include <cstdlib>
andrewm@0 30 #include <cmath>
andrewm@0 31 #include <cstring>
andrewm@0 32 #include <time.h>
andrewm@0 33
andrewm@0 34 const float kMinimumFrequency = 20.0f;
andrewm@0 35 const float kMaximumFrequency = 8000.0f;
andrewm@0 36
andrewm@0 37 float *gWavetable; // Buffer holding the precalculated sine lookup table
andrewm@0 38 float *gPhases; // Buffer holding the phase of each oscillator
andrewm@0 39 float *gFrequencies; // Buffer holding the frequencies of each oscillator
andrewm@0 40 float *gAmplitudes; // Buffer holding the amplitudes of each oscillator
andrewm@0 41 float *gDFrequencies; // Buffer holding the derivatives of frequency
andrewm@0 42 float *gDAmplitudes; // Buffer holding the derivatives of amplitude
andrewm@0 43
andrewm@0 44 float gAudioSampleRate;
andrewm@0 45 int gSampleCount; // Sample counter for indicating when to update frequencies
andrewm@0 46 float gNewMinFrequency;
andrewm@0 47 float gNewMaxFrequency;
andrewm@0 48
andrewm@0 49 // Task for handling the update of the frequencies using the matrix
andrewm@0 50 AuxiliaryTask gFrequencyUpdateTask;
andrewm@0 51
andrewm@0 52 // These settings are carried over from main.cpp
andrewm@0 53 // Setting global variables is an alternative approach
andrewm@56 54 // to passing a structure to userData in setup()
andrewm@0 55
andrewm@0 56 extern int gNumOscillators;
andrewm@0 57 extern int gWavetableLength;
andrewm@0 58
andrewm@0 59 void recalculate_frequencies();
andrewm@0 60
andrewm@0 61 extern "C" {
andrewm@0 62 // Function prototype for ARM assembly implementation of oscillator bank
andrewm@0 63 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
andrewm@0 64 int activePartialNum, int lookupTableSize,
andrewm@0 65 float *phases, float *frequencies, float *amplitudes,
andrewm@0 66 float *freqDerivatives, float *ampDerivatives,
andrewm@0 67 float *lookupTable);
andrewm@0 68 }
andrewm@0 69
andrewm@56 70 // setup() is called once before the audio rendering starts.
andrewm@0 71 // Use it to perform any initialisation and allocation which is dependent
andrewm@0 72 // on the period size or sample rate.
andrewm@0 73 //
andrewm@0 74 // userData holds an opaque pointer to a data structure that was passed
andrewm@0 75 // in from the call to initAudio().
andrewm@0 76 //
andrewm@0 77 // Return true on success; returning false halts the program.
giuliomoro@301 78 bool setup(BelaContext *context, void *userData)
andrewm@0 79 {
andrewm@0 80 srandom(time(NULL));
andrewm@0 81
andrewm@52 82 if(context->audioChannels != 2) {
andrewm@14 83 rt_printf("Error: this example needs stereo audio enabled\n");
andrewm@14 84 return false;
andrewm@14 85 }
andrewm@14 86
andrewm@0 87 // Initialise the sine wavetable
andrewm@0 88 if(posix_memalign((void **)&gWavetable, 8, (gWavetableLength + 1) * sizeof(float))) {
andrewm@0 89 rt_printf("Error allocating wavetable\n");
andrewm@0 90 return false;
andrewm@0 91 }
andrewm@0 92 for(int n = 0; n < gWavetableLength + 1; n++)
andrewm@0 93 gWavetable[n] = sinf(2.0 * M_PI * (float)n / (float)gWavetableLength);
andrewm@0 94
andrewm@0 95 // Allocate the other buffers
andrewm@0 96 if(posix_memalign((void **)&gPhases, 16, gNumOscillators * sizeof(float))) {
andrewm@0 97 rt_printf("Error allocating phase buffer\n");
andrewm@0 98 return false;
andrewm@0 99 }
andrewm@0 100 if(posix_memalign((void **)&gFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 101 rt_printf("Error allocating frequency buffer\n");
andrewm@0 102 return false;
andrewm@0 103 }
andrewm@0 104 if(posix_memalign((void **)&gAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 105 rt_printf("Error allocating amplitude buffer\n");
andrewm@0 106 return false;
andrewm@0 107 }
andrewm@0 108 if(posix_memalign((void **)&gDFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 109 rt_printf("Error allocating frequency derivative buffer\n");
andrewm@0 110 return false;
andrewm@0 111 }
andrewm@0 112 if(posix_memalign((void **)&gDAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 113 rt_printf("Error allocating amplitude derivative buffer\n");
andrewm@0 114 return false;
andrewm@0 115 }
andrewm@0 116
andrewm@0 117 // Initialise buffer contents
andrewm@0 118
andrewm@0 119 float freq = kMinimumFrequency;
andrewm@0 120 float increment = (kMaximumFrequency - kMinimumFrequency) / (float)gNumOscillators;
andrewm@0 121
andrewm@0 122 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 123 gPhases[n] = 0.0;
andrewm@0 124
andrewm@52 125 if(context->analogFrames == 0) {
andrewm@0 126 // Random frequencies when used without matrix
andrewm@0 127 gFrequencies[n] = kMinimumFrequency + (kMaximumFrequency - kMinimumFrequency) * ((float)random() / (float)RAND_MAX);
andrewm@0 128 }
andrewm@0 129 else {
andrewm@0 130 // Constant spread of frequencies when used with matrix
andrewm@0 131 gFrequencies[n] = freq;
andrewm@0 132 freq += increment;
andrewm@0 133 }
andrewm@0 134
andrewm@0 135 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@52 136 gFrequencies[n] *= (float)gWavetableLength / context->audioSampleRate;
andrewm@0 137 gAmplitudes[n] = ((float)random() / (float)RAND_MAX) / (float)gNumOscillators;
andrewm@0 138 gDFrequencies[n] = gDAmplitudes[n] = 0.0;
andrewm@0 139 }
andrewm@0 140
andrewm@45 141 increment = 0;
andrewm@45 142 freq = 440.0;
andrewm@45 143
andrewm@45 144 for(int n = 0; n < gNumOscillators; n++) {
andrewm@45 145 // Update the frequencies to a regular spread, plus a small amount of randomness
andrewm@45 146 // to avoid weird phase effects
andrewm@45 147 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
andrewm@45 148 float newFreq = freq * randScale;
andrewm@45 149
andrewm@45 150 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@52 151 gFrequencies[n] = newFreq * (float)gWavetableLength / context->audioSampleRate;
andrewm@45 152
andrewm@45 153 freq += increment;
andrewm@45 154 }
andrewm@45 155
andrewm@0 156 // Initialise auxiliary tasks
andrewm@303 157 if((gFrequencyUpdateTask = Bela_createAuxiliaryTask(&recalculate_frequencies, 85, "bela-update-frequencies")) == 0)
andrewm@0 158 return false;
andrewm@0 159
andrewm@52 160 //for(int n = 0; n < gNumOscillators; n++)
andrewm@52 161 // rt_printf("%f\n", gFrequencies[n]);
andrewm@45 162
andrewm@52 163 gAudioSampleRate = context->audioSampleRate;
andrewm@0 164 gSampleCount = 0;
andrewm@0 165
andrewm@0 166 return true;
andrewm@0 167 }
andrewm@0 168
andrewm@0 169 // render() is called regularly at the highest priority by the audio engine.
andrewm@0 170 // Input and output are given from the audio hardware and the other
andrewm@0 171 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
andrewm@0 172 // will be 0.
andrewm@0 173
giuliomoro@301 174 void render(BelaContext *context, void *userData)
andrewm@0 175 {
andrewm@0 176 // Initialise buffer to 0
andrewm@52 177 memset(context->audioOut, 0, 2 * context->audioFrames * sizeof(float));
andrewm@0 178
andrewm@0 179 // Render audio frames
andrewm@52 180 oscillator_bank_neon(context->audioFrames, context->audioOut,
andrewm@0 181 gNumOscillators, gWavetableLength,
andrewm@0 182 gPhases, gFrequencies, gAmplitudes,
andrewm@0 183 gDFrequencies, gDAmplitudes,
andrewm@0 184 gWavetable);
andrewm@0 185
andrewm@52 186 if(context->analogFrames != 0 && (gSampleCount += context->audioFrames) >= 128) {
andrewm@0 187 gSampleCount = 0;
andrewm@52 188 gNewMinFrequency = map(context->analogIn[0], 0, 1.0, 1000.0f, 8000.0f);
andrewm@52 189 gNewMaxFrequency = map(context->analogIn[1], 0, 1.0, 1000.0f, 8000.0f);
andrewm@0 190
andrewm@0 191 // Make sure max >= min
andrewm@0 192 if(gNewMaxFrequency < gNewMinFrequency) {
andrewm@0 193 float temp = gNewMaxFrequency;
andrewm@0 194 gNewMaxFrequency = gNewMinFrequency;
andrewm@0 195 gNewMinFrequency = temp;
andrewm@0 196 }
andrewm@0 197
andrewm@0 198 // Request that the lower-priority task run at next opportunity
giuliomoro@301 199 //Bela_scheduleAuxiliaryTask(gFrequencyUpdateTask);
andrewm@0 200 }
andrewm@0 201 }
andrewm@0 202
andrewm@0 203 // This is a lower-priority call to update the frequencies which will happen
andrewm@0 204 // periodically when the matrix is enabled. By placing it at a lower priority,
andrewm@0 205 // it has minimal effect on the audio performance but it will take longer to
andrewm@0 206 // complete if the system is under heavy audio load.
andrewm@0 207
andrewm@0 208 void recalculate_frequencies()
andrewm@0 209 {
andrewm@0 210 float freq = gNewMinFrequency;
andrewm@0 211 float increment = (gNewMaxFrequency - gNewMinFrequency) / (float)gNumOscillators;
andrewm@0 212
andrewm@0 213 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 214 // Update the frequencies to a regular spread, plus a small amount of randomness
andrewm@0 215 // to avoid weird phase effects
andrewm@0 216 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
andrewm@0 217 float newFreq = freq * randScale;
andrewm@0 218
andrewm@0 219 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@0 220 gFrequencies[n] = newFreq * (float)gWavetableLength / gAudioSampleRate;
andrewm@0 221
andrewm@0 222 freq += increment;
andrewm@0 223 }
andrewm@0 224 }
andrewm@0 225
andrewm@0 226
andrewm@56 227 // cleanup() is called once at the end, after the audio has stopped.
andrewm@56 228 // Release any resources that were allocated in setup().
andrewm@0 229
giuliomoro@301 230 void cleanup(BelaContext *context, void *userData)
andrewm@0 231 {
andrewm@0 232 free(gWavetable);
andrewm@0 233 free(gPhases);
andrewm@0 234 free(gFrequencies);
andrewm@0 235 free(gAmplitudes);
andrewm@0 236 free(gDFrequencies);
andrewm@0 237 free(gDAmplitudes);
andrewm@0 238 }