annotate projects/oscillator_bank/render.cpp @ 291:46c12546664f

Added example Heavy/Midi patch
author Giulio Moro <giuliomoro@yahoo.it>
date Sat, 21 May 2016 15:28:03 +0100
parents ac8eb07afcf5
children
rev   line source
robert@269 1 /*
robert@269 2 ____ _____ _ _
robert@269 3 | __ )| ____| | / \
robert@269 4 | _ \| _| | | / _ \
robert@269 5 | |_) | |___| |___ / ___ \
robert@269 6 |____/|_____|_____/_/ \_\.io
robert@269 7
robert@269 8 */
robert@269 9
andrewm@0 10 /*
andrewm@0 11 * render.cpp
andrewm@0 12 *
andrewm@0 13 * Created on: Oct 24, 2014
andrewm@0 14 * Author: parallels
andrewm@0 15 */
andrewm@0 16
robert@269 17 /**
robert@269 18 \example 4_oscillator_bank
robert@269 19
robert@269 20 Oscillator Bank
robert@269 21 ----------------------
robert@269 22
robert@269 23 These files demonstrate an oscillator bank implemented in assembly code
robert@269 24 that is used as part of the d-box project.
robert@269 25
robert@269 26
robert@269 27 */
robert@269 28
andrewm@0 29
andrewm@56 30 #include <BeagleRT.h>
andrewm@56 31 #include <Utilities.h>
andrewm@0 32 #include <rtdk.h>
andrewm@0 33 #include <cstdlib>
andrewm@0 34 #include <cmath>
andrewm@0 35 #include <cstring>
andrewm@0 36 #include <time.h>
andrewm@0 37
andrewm@0 38 const float kMinimumFrequency = 20.0f;
andrewm@0 39 const float kMaximumFrequency = 8000.0f;
andrewm@0 40
andrewm@0 41 float *gWavetable; // Buffer holding the precalculated sine lookup table
andrewm@0 42 float *gPhases; // Buffer holding the phase of each oscillator
andrewm@0 43 float *gFrequencies; // Buffer holding the frequencies of each oscillator
andrewm@0 44 float *gAmplitudes; // Buffer holding the amplitudes of each oscillator
andrewm@0 45 float *gDFrequencies; // Buffer holding the derivatives of frequency
andrewm@0 46 float *gDAmplitudes; // Buffer holding the derivatives of amplitude
andrewm@0 47
andrewm@0 48 float gAudioSampleRate;
andrewm@0 49 int gSampleCount; // Sample counter for indicating when to update frequencies
andrewm@0 50 float gNewMinFrequency;
andrewm@0 51 float gNewMaxFrequency;
andrewm@0 52
andrewm@0 53 // Task for handling the update of the frequencies using the matrix
andrewm@0 54 AuxiliaryTask gFrequencyUpdateTask;
andrewm@0 55
andrewm@0 56 // These settings are carried over from main.cpp
andrewm@0 57 // Setting global variables is an alternative approach
andrewm@56 58 // to passing a structure to userData in setup()
andrewm@0 59
andrewm@0 60 extern int gNumOscillators;
andrewm@0 61 extern int gWavetableLength;
andrewm@0 62
andrewm@0 63 void recalculate_frequencies();
andrewm@0 64
andrewm@0 65 extern "C" {
andrewm@0 66 // Function prototype for ARM assembly implementation of oscillator bank
andrewm@0 67 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
andrewm@0 68 int activePartialNum, int lookupTableSize,
andrewm@0 69 float *phases, float *frequencies, float *amplitudes,
andrewm@0 70 float *freqDerivatives, float *ampDerivatives,
andrewm@0 71 float *lookupTable);
andrewm@0 72 }
andrewm@0 73
andrewm@56 74 // setup() is called once before the audio rendering starts.
andrewm@0 75 // Use it to perform any initialisation and allocation which is dependent
andrewm@0 76 // on the period size or sample rate.
andrewm@0 77 //
andrewm@0 78 // userData holds an opaque pointer to a data structure that was passed
andrewm@0 79 // in from the call to initAudio().
andrewm@0 80 //
andrewm@0 81 // Return true on success; returning false halts the program.
andrewm@56 82 bool setup(BeagleRTContext *context, void *userData)
andrewm@0 83 {
andrewm@0 84 srandom(time(NULL));
andrewm@0 85
andrewm@52 86 if(context->audioChannels != 2) {
andrewm@14 87 rt_printf("Error: this example needs stereo audio enabled\n");
andrewm@14 88 return false;
andrewm@14 89 }
andrewm@14 90
andrewm@0 91 // Initialise the sine wavetable
andrewm@0 92 if(posix_memalign((void **)&gWavetable, 8, (gWavetableLength + 1) * sizeof(float))) {
andrewm@0 93 rt_printf("Error allocating wavetable\n");
andrewm@0 94 return false;
andrewm@0 95 }
andrewm@0 96 for(int n = 0; n < gWavetableLength + 1; n++)
andrewm@0 97 gWavetable[n] = sinf(2.0 * M_PI * (float)n / (float)gWavetableLength);
andrewm@0 98
andrewm@0 99 // Allocate the other buffers
andrewm@0 100 if(posix_memalign((void **)&gPhases, 16, gNumOscillators * sizeof(float))) {
andrewm@0 101 rt_printf("Error allocating phase buffer\n");
andrewm@0 102 return false;
andrewm@0 103 }
andrewm@0 104 if(posix_memalign((void **)&gFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 105 rt_printf("Error allocating frequency buffer\n");
andrewm@0 106 return false;
andrewm@0 107 }
andrewm@0 108 if(posix_memalign((void **)&gAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 109 rt_printf("Error allocating amplitude buffer\n");
andrewm@0 110 return false;
andrewm@0 111 }
andrewm@0 112 if(posix_memalign((void **)&gDFrequencies, 16, gNumOscillators * sizeof(float))) {
andrewm@0 113 rt_printf("Error allocating frequency derivative buffer\n");
andrewm@0 114 return false;
andrewm@0 115 }
andrewm@0 116 if(posix_memalign((void **)&gDAmplitudes, 16, gNumOscillators * sizeof(float))) {
andrewm@0 117 rt_printf("Error allocating amplitude derivative buffer\n");
andrewm@0 118 return false;
andrewm@0 119 }
andrewm@0 120
andrewm@0 121 // Initialise buffer contents
andrewm@0 122
andrewm@0 123 float freq = kMinimumFrequency;
andrewm@0 124 float increment = (kMaximumFrequency - kMinimumFrequency) / (float)gNumOscillators;
andrewm@0 125
andrewm@0 126 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 127 gPhases[n] = 0.0;
andrewm@0 128
andrewm@52 129 if(context->analogFrames == 0) {
andrewm@0 130 // Random frequencies when used without matrix
andrewm@0 131 gFrequencies[n] = kMinimumFrequency + (kMaximumFrequency - kMinimumFrequency) * ((float)random() / (float)RAND_MAX);
andrewm@0 132 }
andrewm@0 133 else {
andrewm@0 134 // Constant spread of frequencies when used with matrix
andrewm@0 135 gFrequencies[n] = freq;
andrewm@0 136 freq += increment;
andrewm@0 137 }
andrewm@0 138
andrewm@0 139 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@52 140 gFrequencies[n] *= (float)gWavetableLength / context->audioSampleRate;
andrewm@0 141 gAmplitudes[n] = ((float)random() / (float)RAND_MAX) / (float)gNumOscillators;
andrewm@0 142 gDFrequencies[n] = gDAmplitudes[n] = 0.0;
andrewm@0 143 }
andrewm@0 144
andrewm@45 145 increment = 0;
andrewm@45 146 freq = 440.0;
andrewm@45 147
andrewm@45 148 for(int n = 0; n < gNumOscillators; n++) {
andrewm@45 149 // Update the frequencies to a regular spread, plus a small amount of randomness
andrewm@45 150 // to avoid weird phase effects
andrewm@45 151 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
andrewm@45 152 float newFreq = freq * randScale;
andrewm@45 153
andrewm@45 154 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@52 155 gFrequencies[n] = newFreq * (float)gWavetableLength / context->audioSampleRate;
andrewm@45 156
andrewm@45 157 freq += increment;
andrewm@45 158 }
andrewm@45 159
andrewm@0 160 // Initialise auxiliary tasks
andrewm@52 161 if((gFrequencyUpdateTask = BeagleRT_createAuxiliaryTask(&recalculate_frequencies, 85, "beaglert-update-frequencies")) == 0)
andrewm@0 162 return false;
andrewm@0 163
andrewm@52 164 //for(int n = 0; n < gNumOscillators; n++)
andrewm@52 165 // rt_printf("%f\n", gFrequencies[n]);
andrewm@45 166
andrewm@52 167 gAudioSampleRate = context->audioSampleRate;
andrewm@0 168 gSampleCount = 0;
andrewm@0 169
andrewm@0 170 return true;
andrewm@0 171 }
andrewm@0 172
andrewm@0 173 // render() is called regularly at the highest priority by the audio engine.
andrewm@0 174 // Input and output are given from the audio hardware and the other
andrewm@0 175 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
andrewm@0 176 // will be 0.
andrewm@0 177
andrewm@52 178 void render(BeagleRTContext *context, void *userData)
andrewm@0 179 {
andrewm@0 180 // Initialise buffer to 0
andrewm@52 181 memset(context->audioOut, 0, 2 * context->audioFrames * sizeof(float));
andrewm@0 182
andrewm@0 183 // Render audio frames
andrewm@52 184 oscillator_bank_neon(context->audioFrames, context->audioOut,
andrewm@0 185 gNumOscillators, gWavetableLength,
andrewm@0 186 gPhases, gFrequencies, gAmplitudes,
andrewm@0 187 gDFrequencies, gDAmplitudes,
andrewm@0 188 gWavetable);
andrewm@0 189
andrewm@52 190 if(context->analogFrames != 0 && (gSampleCount += context->audioFrames) >= 128) {
andrewm@0 191 gSampleCount = 0;
andrewm@52 192 gNewMinFrequency = map(context->analogIn[0], 0, 1.0, 1000.0f, 8000.0f);
andrewm@52 193 gNewMaxFrequency = map(context->analogIn[1], 0, 1.0, 1000.0f, 8000.0f);
andrewm@0 194
andrewm@0 195 // Make sure max >= min
andrewm@0 196 if(gNewMaxFrequency < gNewMinFrequency) {
andrewm@0 197 float temp = gNewMaxFrequency;
andrewm@0 198 gNewMaxFrequency = gNewMinFrequency;
andrewm@0 199 gNewMinFrequency = temp;
andrewm@0 200 }
andrewm@0 201
andrewm@0 202 // Request that the lower-priority task run at next opportunity
andrewm@52 203 //BeagleRT_scheduleAuxiliaryTask(gFrequencyUpdateTask);
andrewm@0 204 }
andrewm@0 205 }
andrewm@0 206
andrewm@0 207 // This is a lower-priority call to update the frequencies which will happen
andrewm@0 208 // periodically when the matrix is enabled. By placing it at a lower priority,
andrewm@0 209 // it has minimal effect on the audio performance but it will take longer to
andrewm@0 210 // complete if the system is under heavy audio load.
andrewm@0 211
andrewm@0 212 void recalculate_frequencies()
andrewm@0 213 {
andrewm@0 214 float freq = gNewMinFrequency;
andrewm@0 215 float increment = (gNewMaxFrequency - gNewMinFrequency) / (float)gNumOscillators;
andrewm@0 216
andrewm@0 217 for(int n = 0; n < gNumOscillators; n++) {
andrewm@0 218 // Update the frequencies to a regular spread, plus a small amount of randomness
andrewm@0 219 // to avoid weird phase effects
andrewm@0 220 float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
andrewm@0 221 float newFreq = freq * randScale;
andrewm@0 222
andrewm@0 223 // For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
andrewm@0 224 gFrequencies[n] = newFreq * (float)gWavetableLength / gAudioSampleRate;
andrewm@0 225
andrewm@0 226 freq += increment;
andrewm@0 227 }
andrewm@0 228 }
andrewm@0 229
andrewm@0 230
andrewm@56 231 // cleanup() is called once at the end, after the audio has stopped.
andrewm@56 232 // Release any resources that were allocated in setup().
andrewm@0 233
andrewm@56 234 void cleanup(BeagleRTContext *context, void *userData)
andrewm@0 235 {
andrewm@0 236 free(gWavetable);
andrewm@0 237 free(gPhases);
andrewm@0 238 free(gFrequencies);
andrewm@0 239 free(gAmplitudes);
andrewm@0 240 free(gDFrequencies);
andrewm@0 241 free(gDAmplitudes);
andrewm@0 242 }