robert@533
|
1 /*
|
robert@533
|
2 ____ _____ _ _
|
robert@533
|
3 | __ )| ____| | / \
|
robert@533
|
4 | _ \| _| | | / _ \
|
robert@533
|
5 | |_) | |___| |___ / ___ \
|
robert@533
|
6 |____/|_____|_____/_/ \_\
|
robert@533
|
7
|
robert@533
|
8 The platform for ultra-low latency audio and sensor processing
|
robert@533
|
9
|
robert@533
|
10 http://bela.io
|
robert@533
|
11
|
robert@533
|
12 A project of the Augmented Instruments Laboratory within the
|
robert@533
|
13 Centre for Digital Music at Queen Mary University of London.
|
robert@533
|
14 http://www.eecs.qmul.ac.uk/~andrewm
|
robert@533
|
15
|
robert@533
|
16 (c) 2016 Augmented Instruments Laboratory: Andrew McPherson,
|
robert@533
|
17 Astrid Bin, Liam Donovan, Christian Heinrichs, Robert Jack,
|
robert@533
|
18 Giulio Moro, Laurel Pardue, Victor Zappi. All rights reserved.
|
robert@533
|
19
|
robert@533
|
20 The Bela software is distributed under the GNU Lesser General Public License
|
robert@533
|
21 (LGPL 3.0), available here: https://www.gnu.org/licenses/lgpl-3.0.txt
|
robert@533
|
22 */
|
robert@533
|
23
|
robert@533
|
24 #include <Bela.h>
|
robert@533
|
25 #include <cmath>
|
robert@533
|
26
|
robert@533
|
27 float gFrequency = 4.0;
|
robert@533
|
28 float gPhase;
|
robert@533
|
29 float gInverseSampleRate;
|
robert@533
|
30
|
robert@533
|
31 bool setup(BelaContext *context, void *userData)
|
robert@533
|
32 {
|
robert@533
|
33
|
robert@533
|
34 gInverseSampleRate = 1.0 / context->audioSampleRate;
|
robert@533
|
35 gPhase = 0.0;
|
robert@533
|
36
|
robert@533
|
37 return true;
|
robert@533
|
38 }
|
robert@533
|
39
|
robert@533
|
40 void render(BelaContext *context, void *userData)
|
robert@533
|
41 {
|
robert@533
|
42 // Nested for loops for audio channels
|
robert@533
|
43 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
robert@533
|
44
|
robert@533
|
45 // Generate a sinewave with frequency set by gFrequency
|
robert@533
|
46 // and amplitude from -0.5 to 0.5
|
robert@533
|
47 float lfo = sinf(gPhase) * 0.5;
|
robert@533
|
48 // Keep track and wrap the phase of the sinewave
|
robert@533
|
49 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
|
robert@533
|
50 if(gPhase > 2.0 * M_PI)
|
robert@533
|
51 gPhase -= 2.0 * M_PI;
|
robert@533
|
52
|
robert@533
|
53 for(unsigned int channel = 0; channel < context->audioChannels; channel++) {
|
robert@533
|
54 // Read the audio input and half the amplitude
|
robert@533
|
55 float input = audioRead(context, n, channel) * 0.5;
|
robert@533
|
56 // Write to audio output the audio input multiplied by the sinewave
|
robert@533
|
57 audioWrite(context, n, channel, (input*lfo));
|
robert@533
|
58
|
robert@533
|
59 }
|
robert@533
|
60 }
|
robert@533
|
61
|
robert@533
|
62 // Nested for loops for analog channels
|
robert@533
|
63 for(unsigned int n = 0; n < context->analogFrames; n++) {
|
robert@533
|
64 for(unsigned int ch = 0; ch < context->analogChannels; ch++) {
|
robert@533
|
65 // Read analog channel 0 and map the range from 0-1 to 0.25-20
|
robert@533
|
66 // use this to set the value of gFrequency
|
robert@533
|
67 gFrequency = map(analogRead(context, n, 0), 0.0, 1.0, 0.25, 20.0);
|
robert@533
|
68
|
robert@533
|
69 }
|
robert@533
|
70 }
|
robert@533
|
71
|
robert@533
|
72 }
|
robert@533
|
73
|
robert@533
|
74 void cleanup(BelaContext *context, void *userData)
|
robert@533
|
75 {
|
robert@533
|
76
|
robert@533
|
77 }
|
robert@533
|
78
|
robert@533
|
79
|
robert@533
|
80 /**
|
robert@533
|
81 \example tremolo/render.cpp
|
robert@533
|
82
|
robert@533
|
83 A simple tremolo effect
|
robert@533
|
84 -----------------------
|
robert@533
|
85
|
robert@533
|
86 This sketch demonstrates how to make a simple tremolo effect with one potiometer to
|
robert@533
|
87 control the rate of the effect. A tremolo effect is a simple type of amplitude modulation
|
robert@533
|
88 where the amplitude of one signal is continuous modulated by the amplitude of another.
|
robert@533
|
89 This is achieved by multiplying to signals together.
|
robert@533
|
90
|
robert@533
|
91 In this example we want to create a tremolo effect like that you would find in a guitar
|
robert@533
|
92 effects box so our first signal will be our audio input into which we could plug a guitar
|
robert@533
|
93 or external sound source. This will be our 'carrier' signal.
|
robert@533
|
94
|
robert@533
|
95 The second signal that we will use, the 'modulator', will be a low freqeuncy oscillator (LFO),
|
robert@533
|
96 in this case a sinetone which we will generate in the same way as the 01-Basic/sinetone example.
|
robert@533
|
97 The frequency of this sinetone is determined by a global variable, `gFrequency`. Again, the
|
robert@533
|
98 sinetone is produced by incrementing the phase of a sine function on every audio frame.
|
robert@533
|
99
|
robert@533
|
100 In `render()` you'll see two nested for loop structures, one for audio and the other for the
|
robert@533
|
101 analogs. You should be pretty familiar with this structure by now. In the first of these for loops
|
robert@533
|
102 we deal with all the audio -- in the second with reading the analog input channels. We read the
|
robert@533
|
103 value of analog input 0 and map it to an appropriate range for controlling the frequency
|
robert@533
|
104 of the sine tone.
|
robert@533
|
105
|
robert@533
|
106 The lfo is then mulitplied together with the audio input and sent to the audio output.
|
robert@533
|
107 */
|