andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@0
|
27 #include <rtdk.h>
|
andrewm@0
|
28
|
andrewm@0
|
29 #include "../include/RTAudio.h"
|
andrewm@0
|
30 #include "../include/PRU.h"
|
andrewm@0
|
31 #include "../include/I2c_Codec.h"
|
andrewm@0
|
32 #include "../include/render.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
andrewm@0
|
34
|
andrewm@0
|
35 using namespace std;
|
andrewm@0
|
36
|
andrewm@0
|
37 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
38 // can schedule
|
andrewm@0
|
39 typedef struct {
|
andrewm@0
|
40 RT_TASK task;
|
andrewm@0
|
41 void (*function)(void);
|
andrewm@0
|
42 char *name;
|
andrewm@0
|
43 int priority;
|
andrewm@0
|
44 } InternalAuxiliaryTask;
|
andrewm@0
|
45
|
andrewm@0
|
46 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@0
|
47
|
andrewm@0
|
48 // Real-time tasks and objects
|
andrewm@0
|
49 RT_TASK gRTAudioThread;
|
andrewm@0
|
50 PRU *gPRU = 0;
|
andrewm@0
|
51 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
52
|
andrewm@0
|
53 vector<InternalAuxiliaryTask*> gAuxTasks;
|
andrewm@0
|
54
|
andrewm@0
|
55 // Flag which tells the audio task to stop
|
andrewm@0
|
56 bool gShouldStop = false;
|
andrewm@0
|
57
|
andrewm@0
|
58 // general settings
|
andrewm@0
|
59 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
60 char gPRUFilename[256] = "pru_rtaudio.bin"; // path to PRU binary file
|
andrewm@0
|
61 int gAmplifierMutePin = -1;
|
andrewm@5
|
62 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
63
|
andrewm@0
|
64
|
andrewm@0
|
65 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
66 // audio, but does not actually start the calculations.
|
andrewm@0
|
67 // periodSize indicates the number of _sensor_ frames per period: the audio period size
|
andrewm@0
|
68 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
|
andrewm@0
|
69 // plus any latency inherent in the ADCs and DACs themselves.
|
andrewm@0
|
70 // useMatrix indicates whether to use the ADC and DAC or just the audio codec.
|
andrewm@0
|
71 // userData is an opaque pointer which will be passed through to the initialise_render()
|
andrewm@0
|
72 // function for application-specific use
|
andrewm@0
|
73 //
|
andrewm@0
|
74 // Returns 0 on success.
|
andrewm@0
|
75
|
andrewm@5
|
76 int BeagleRT_initAudio(RTAudioSettings *settings, void *userData)
|
andrewm@0
|
77 {
|
andrewm@0
|
78 rt_print_auto_init(1);
|
andrewm@5
|
79 setVerboseLevel(settings->verbose);
|
andrewm@5
|
80
|
andrewm@0
|
81 if(gRTAudioVerbose == 1)
|
andrewm@0
|
82 rt_printf("Running with Xenomai\n");
|
andrewm@0
|
83
|
andrewm@5
|
84 if(gRTAudioVerbose) {
|
andrewm@5
|
85 cout << "Starting with period size " << settings->periodSize << "; ";
|
andrewm@5
|
86 if(settings->useMatrix)
|
andrewm@5
|
87 cout << "matrix enabled\n";
|
andrewm@5
|
88 else
|
andrewm@5
|
89 cout << "matrix disabled\n";
|
andrewm@5
|
90 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
91 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
92 if(settings->beginMuted)
|
andrewm@5
|
93 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
94 }
|
andrewm@0
|
95
|
andrewm@0
|
96 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
97 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
98 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
99 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
100
|
andrewm@5
|
101 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
102 if(gRTAudioVerbose)
|
andrewm@0
|
103 cout << "Warning: couldn't export amplifier mute pin\n";
|
andrewm@0
|
104 }
|
andrewm@5
|
105 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
106 if(gRTAudioVerbose)
|
andrewm@0
|
107 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
108 return -1;
|
andrewm@0
|
109 }
|
andrewm@5
|
110 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
111 if(gRTAudioVerbose)
|
andrewm@0
|
112 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
113 return -1;
|
andrewm@0
|
114 }
|
andrewm@0
|
115 }
|
andrewm@0
|
116
|
andrewm@0
|
117 // Use PRU for audio
|
andrewm@0
|
118 gPRU = new PRU();
|
andrewm@0
|
119 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
120
|
andrewm@5
|
121 if(gPRU->prepareGPIO(settings->useMatrix, 1, 1)) {
|
andrewm@0
|
122 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
123 return 1;
|
andrewm@0
|
124 }
|
andrewm@5
|
125 if(gPRU->initialise(0, settings->periodSize, true)) {
|
andrewm@0
|
126 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
127 return 1;
|
andrewm@0
|
128 }
|
andrewm@5
|
129 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
130 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
131 return 1;
|
andrewm@0
|
132 }
|
andrewm@0
|
133 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
134 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
135 return 1;
|
andrewm@0
|
136 }
|
andrewm@0
|
137
|
andrewm@5
|
138 // Set default volume levels
|
andrewm@5
|
139 BeagleRT_setDACLevel(settings->dacLevel);
|
andrewm@5
|
140 BeagleRT_setADCLevel(settings->adcLevel);
|
andrewm@5
|
141 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
142
|
andrewm@5
|
143 if(!initialise_render(2, settings->useMatrix ? settings->periodSize : 0, settings->periodSize * 2, 22050.0, 44100.0, userData)) {
|
andrewm@0
|
144 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
145 return 1;
|
andrewm@0
|
146 }
|
andrewm@0
|
147
|
andrewm@0
|
148 return 0;
|
andrewm@0
|
149 }
|
andrewm@0
|
150
|
andrewm@0
|
151 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
152 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
153 // turn will call the audio render() callback function every time
|
andrewm@0
|
154 // there is new data to process.
|
andrewm@0
|
155
|
andrewm@0
|
156 void audioLoop(void *)
|
andrewm@0
|
157 {
|
andrewm@0
|
158 if(gRTAudioVerbose==1)
|
andrewm@0
|
159 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
160
|
andrewm@0
|
161 // PRU audio
|
andrewm@0
|
162 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
163
|
andrewm@0
|
164 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
165 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
166 gShouldStop = 1;
|
andrewm@0
|
167 }
|
andrewm@0
|
168 else {
|
andrewm@0
|
169 if(gPRU->start(gPRUFilename)) {
|
andrewm@0
|
170 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
171 gShouldStop = 1;
|
andrewm@0
|
172 }
|
andrewm@0
|
173 else {
|
andrewm@0
|
174 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
175
|
andrewm@5
|
176 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
177 // First unmute the amplifier
|
andrewm@5
|
178 if(BeagleRT_muteSpeakers(0)) {
|
andrewm@5
|
179 if(gRTAudioVerbose)
|
andrewm@5
|
180 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
181 }
|
andrewm@0
|
182 }
|
andrewm@0
|
183
|
andrewm@0
|
184 gPRU->loop();
|
andrewm@0
|
185
|
andrewm@0
|
186 // Now clean up
|
andrewm@0
|
187 // gPRU->waitForFinish();
|
andrewm@0
|
188 gPRU->disable();
|
andrewm@0
|
189 gAudioCodec->stopAudio();
|
andrewm@0
|
190 gPRU->cleanupGPIO();
|
andrewm@0
|
191 }
|
andrewm@0
|
192 }
|
andrewm@0
|
193
|
andrewm@0
|
194 if(gRTAudioVerbose == 1)
|
andrewm@0
|
195 rt_printf("audio thread ended\n");
|
andrewm@0
|
196 }
|
andrewm@0
|
197
|
andrewm@0
|
198 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@0
|
199 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
|
andrewm@0
|
200 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
andrewm@0
|
201 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
|
andrewm@0
|
202 {
|
andrewm@0
|
203 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
204
|
andrewm@0
|
205 // Attempt to create the task
|
andrewm@0
|
206 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
207 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
208 free(newTask);
|
andrewm@0
|
209 return 0;
|
andrewm@0
|
210 }
|
andrewm@0
|
211
|
andrewm@0
|
212 // Populate the rest of the data structure and store it in the vector
|
andrewm@0
|
213 newTask->function = functionToCall;
|
andrewm@0
|
214 newTask->name = strdup(name);
|
andrewm@0
|
215 newTask->priority = priority;
|
andrewm@0
|
216
|
andrewm@0
|
217 gAuxTasks.push_back(newTask);
|
andrewm@0
|
218
|
andrewm@0
|
219 return (AuxiliaryTask)newTask;
|
andrewm@0
|
220 }
|
andrewm@0
|
221
|
andrewm@0
|
222 // Schedule a previously created auxiliary task. It will run when the priority rules next
|
andrewm@0
|
223 // allow it to be scheduled.
|
andrewm@0
|
224 void scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
225 {
|
andrewm@0
|
226 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
andrewm@0
|
227
|
andrewm@0
|
228 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
229 }
|
andrewm@0
|
230
|
andrewm@0
|
231 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
232 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
233 // Treat the argument as containing the task structure
|
andrewm@0
|
234 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
235 {
|
andrewm@0
|
236 // Get function to call from the argument
|
andrewm@0
|
237 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
|
andrewm@0
|
238 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
|
andrewm@0
|
239
|
andrewm@0
|
240 // Wait for a notification
|
andrewm@0
|
241 rt_task_suspend(NULL);
|
andrewm@0
|
242
|
andrewm@0
|
243 while(!gShouldStop) {
|
andrewm@0
|
244 // Then run the calculations
|
andrewm@0
|
245 auxiliary_function();
|
andrewm@0
|
246
|
andrewm@0
|
247 // Wait for a notification
|
andrewm@0
|
248 rt_task_suspend(NULL);
|
andrewm@0
|
249 }
|
andrewm@0
|
250
|
andrewm@0
|
251 if(gRTAudioVerbose == 1)
|
andrewm@0
|
252 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
253 }
|
andrewm@0
|
254
|
andrewm@0
|
255 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
256 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
257 // on success.
|
andrewm@0
|
258
|
andrewm@5
|
259 int BeagleRT_startAudio()
|
andrewm@0
|
260 {
|
andrewm@0
|
261 // Create audio thread with the highest priority
|
andrewm@0
|
262 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
263 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
264 return -1;
|
andrewm@0
|
265 }
|
andrewm@0
|
266
|
andrewm@0
|
267 // Start all RT threads
|
andrewm@0
|
268 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
269 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
270 return -1;
|
andrewm@0
|
271 }
|
andrewm@0
|
272
|
andrewm@0
|
273 // The user may have created other tasks. Start those also.
|
andrewm@0
|
274 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
275 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
276 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
277
|
andrewm@0
|
278 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
andrewm@0
|
279 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
andrewm@0
|
280 return -1;
|
andrewm@0
|
281 }
|
andrewm@0
|
282 }
|
andrewm@0
|
283
|
andrewm@0
|
284 return 0;
|
andrewm@0
|
285 }
|
andrewm@0
|
286
|
andrewm@0
|
287 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
288 // for the tasks to complete before returning.
|
andrewm@0
|
289
|
andrewm@5
|
290 void BeagleRT_stopAudio()
|
andrewm@0
|
291 {
|
andrewm@0
|
292 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
293 gShouldStop = true;
|
andrewm@0
|
294
|
andrewm@5
|
295 if(gRTAudioVerbose)
|
andrewm@5
|
296 cout << "Stopping audio...\n";
|
andrewm@5
|
297
|
andrewm@0
|
298 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
299 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
300
|
andrewm@0
|
301 // Stop all the auxiliary threads too
|
andrewm@0
|
302 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
303 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
304 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
305
|
andrewm@0
|
306 // Wake up each thread and join it
|
andrewm@0
|
307 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
308 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
309 }
|
andrewm@0
|
310 }
|
andrewm@0
|
311
|
andrewm@0
|
312 // Free any resources associated with PRU real-time audio
|
andrewm@5
|
313 void BeagleRT_cleanupAudio()
|
andrewm@0
|
314 {
|
andrewm@0
|
315 cleanup_render();
|
andrewm@0
|
316
|
andrewm@0
|
317 // Clean up the auxiliary tasks
|
andrewm@0
|
318 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
319 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
320 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
321
|
andrewm@0
|
322 // Free the name string and the struct itself
|
andrewm@0
|
323 free(taskStruct->name);
|
andrewm@0
|
324 free(taskStruct);
|
andrewm@0
|
325 }
|
andrewm@0
|
326 gAuxTasks.clear();
|
andrewm@0
|
327
|
andrewm@0
|
328 if(gPRU != 0)
|
andrewm@0
|
329 delete gPRU;
|
andrewm@0
|
330 if(gAudioCodec != 0)
|
andrewm@0
|
331 delete gAudioCodec;
|
andrewm@0
|
332
|
andrewm@0
|
333 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
334 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
335 gAmplifierMutePin = -1;
|
andrewm@0
|
336 }
|
andrewm@0
|
337
|
andrewm@5
|
338 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
339 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
340 int BeagleRT_setDACLevel(float decibels)
|
andrewm@5
|
341 {
|
andrewm@5
|
342 if(gAudioCodec == 0)
|
andrewm@5
|
343 return -1;
|
andrewm@5
|
344 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
345 }
|
andrewm@5
|
346
|
andrewm@5
|
347 // Set the level of the ADC
|
andrewm@5
|
348 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
andrewm@5
|
349 int BeagleRT_setADCLevel(float decibels)
|
andrewm@5
|
350 {
|
andrewm@5
|
351 if(gAudioCodec == 0)
|
andrewm@5
|
352 return -1;
|
andrewm@5
|
353 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
354 }
|
andrewm@5
|
355
|
andrewm@5
|
356 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
357 // output only (not line out or speaker)
|
andrewm@5
|
358 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
359 int BeagleRT_setHeadphoneLevel(float decibels)
|
andrewm@5
|
360 {
|
andrewm@5
|
361 if(gAudioCodec == 0)
|
andrewm@5
|
362 return -1;
|
andrewm@5
|
363 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
364 }
|
andrewm@5
|
365
|
andrewm@5
|
366 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
367 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
368 // Returns 0 on success
|
andrewm@5
|
369 int BeagleRT_muteSpeakers(int mute)
|
andrewm@5
|
370 {
|
andrewm@5
|
371 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
372
|
andrewm@5
|
373 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
374 if(gAmplifierMutePin < 0)
|
andrewm@5
|
375 return -1;
|
andrewm@5
|
376
|
andrewm@5
|
377 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
378 }
|
andrewm@5
|
379
|
andrewm@0
|
380 // Set the verbosity level
|
andrewm@0
|
381 void setVerboseLevel(int level)
|
andrewm@0
|
382 {
|
andrewm@0
|
383 gRTAudioVerbose = level;
|
andrewm@0
|
384 }
|