annotate core/RTAudio.cpp @ 5:09f03ac40fcc

API improvements and cleanups. Now all common audio command-line options can be parsed automatically.
author andrewm
date Sat, 08 Nov 2014 16:16:55 +0100
parents 8a575ba3ab52
children a6beeba3a648
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@0 27 #include <rtdk.h>
andrewm@0 28
andrewm@0 29 #include "../include/RTAudio.h"
andrewm@0 30 #include "../include/PRU.h"
andrewm@0 31 #include "../include/I2c_Codec.h"
andrewm@0 32 #include "../include/render.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@0 35 using namespace std;
andrewm@0 36
andrewm@0 37 // Data structure to keep track of auxiliary tasks we
andrewm@0 38 // can schedule
andrewm@0 39 typedef struct {
andrewm@0 40 RT_TASK task;
andrewm@0 41 void (*function)(void);
andrewm@0 42 char *name;
andrewm@0 43 int priority;
andrewm@0 44 } InternalAuxiliaryTask;
andrewm@0 45
andrewm@0 46 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@0 47
andrewm@0 48 // Real-time tasks and objects
andrewm@0 49 RT_TASK gRTAudioThread;
andrewm@0 50 PRU *gPRU = 0;
andrewm@0 51 I2c_Codec *gAudioCodec = 0;
andrewm@0 52
andrewm@0 53 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 54
andrewm@0 55 // Flag which tells the audio task to stop
andrewm@0 56 bool gShouldStop = false;
andrewm@0 57
andrewm@0 58 // general settings
andrewm@0 59 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 60 char gPRUFilename[256] = "pru_rtaudio.bin"; // path to PRU binary file
andrewm@0 61 int gAmplifierMutePin = -1;
andrewm@5 62 int gAmplifierShouldBeginMuted = 0;
andrewm@0 63
andrewm@0 64
andrewm@0 65 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 66 // audio, but does not actually start the calculations.
andrewm@0 67 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 68 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 69 // plus any latency inherent in the ADCs and DACs themselves.
andrewm@0 70 // useMatrix indicates whether to use the ADC and DAC or just the audio codec.
andrewm@0 71 // userData is an opaque pointer which will be passed through to the initialise_render()
andrewm@0 72 // function for application-specific use
andrewm@0 73 //
andrewm@0 74 // Returns 0 on success.
andrewm@0 75
andrewm@5 76 int BeagleRT_initAudio(RTAudioSettings *settings, void *userData)
andrewm@0 77 {
andrewm@0 78 rt_print_auto_init(1);
andrewm@5 79 setVerboseLevel(settings->verbose);
andrewm@5 80
andrewm@0 81 if(gRTAudioVerbose == 1)
andrewm@0 82 rt_printf("Running with Xenomai\n");
andrewm@0 83
andrewm@5 84 if(gRTAudioVerbose) {
andrewm@5 85 cout << "Starting with period size " << settings->periodSize << "; ";
andrewm@5 86 if(settings->useMatrix)
andrewm@5 87 cout << "matrix enabled\n";
andrewm@5 88 else
andrewm@5 89 cout << "matrix disabled\n";
andrewm@5 90 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 91 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 92 if(settings->beginMuted)
andrewm@5 93 cout << "Beginning with speaker muted\n";
andrewm@5 94 }
andrewm@0 95
andrewm@0 96 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 97 if(settings->ampMutePin >= 0) {
andrewm@5 98 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 99 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 100
andrewm@5 101 if(gpio_export(settings->ampMutePin)) {
andrewm@0 102 if(gRTAudioVerbose)
andrewm@0 103 cout << "Warning: couldn't export amplifier mute pin\n";
andrewm@0 104 }
andrewm@5 105 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 106 if(gRTAudioVerbose)
andrewm@0 107 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 108 return -1;
andrewm@0 109 }
andrewm@5 110 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 111 if(gRTAudioVerbose)
andrewm@0 112 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 113 return -1;
andrewm@0 114 }
andrewm@0 115 }
andrewm@0 116
andrewm@0 117 // Use PRU for audio
andrewm@0 118 gPRU = new PRU();
andrewm@0 119 gAudioCodec = new I2c_Codec();
andrewm@0 120
andrewm@5 121 if(gPRU->prepareGPIO(settings->useMatrix, 1, 1)) {
andrewm@0 122 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 123 return 1;
andrewm@0 124 }
andrewm@5 125 if(gPRU->initialise(0, settings->periodSize, true)) {
andrewm@0 126 cout << "Error: unable to initialise PRU\n";
andrewm@0 127 return 1;
andrewm@0 128 }
andrewm@5 129 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 130 cout << "Unable to open codec I2C\n";
andrewm@0 131 return 1;
andrewm@0 132 }
andrewm@0 133 if(gAudioCodec->initCodec()) {
andrewm@0 134 cout << "Error: unable to initialise audio codec\n";
andrewm@0 135 return 1;
andrewm@0 136 }
andrewm@0 137
andrewm@5 138 // Set default volume levels
andrewm@5 139 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 140 BeagleRT_setADCLevel(settings->adcLevel);
andrewm@5 141 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 142
andrewm@5 143 if(!initialise_render(2, settings->useMatrix ? settings->periodSize : 0, settings->periodSize * 2, 22050.0, 44100.0, userData)) {
andrewm@0 144 cout << "Couldn't initialise audio rendering\n";
andrewm@0 145 return 1;
andrewm@0 146 }
andrewm@0 147
andrewm@0 148 return 0;
andrewm@0 149 }
andrewm@0 150
andrewm@0 151 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 152 // and then transfers control to the PRU object. The PRU object in
andrewm@0 153 // turn will call the audio render() callback function every time
andrewm@0 154 // there is new data to process.
andrewm@0 155
andrewm@0 156 void audioLoop(void *)
andrewm@0 157 {
andrewm@0 158 if(gRTAudioVerbose==1)
andrewm@0 159 rt_printf("_________________Audio Thread!\n");
andrewm@0 160
andrewm@0 161 // PRU audio
andrewm@0 162 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 163
andrewm@0 164 if(gAudioCodec->startAudio(0)) {
andrewm@0 165 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 166 gShouldStop = 1;
andrewm@0 167 }
andrewm@0 168 else {
andrewm@0 169 if(gPRU->start(gPRUFilename)) {
andrewm@0 170 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 171 gShouldStop = 1;
andrewm@0 172 }
andrewm@0 173 else {
andrewm@0 174 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 175
andrewm@5 176 if(!gAmplifierShouldBeginMuted) {
andrewm@5 177 // First unmute the amplifier
andrewm@5 178 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 179 if(gRTAudioVerbose)
andrewm@5 180 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 181 }
andrewm@0 182 }
andrewm@0 183
andrewm@0 184 gPRU->loop();
andrewm@0 185
andrewm@0 186 // Now clean up
andrewm@0 187 // gPRU->waitForFinish();
andrewm@0 188 gPRU->disable();
andrewm@0 189 gAudioCodec->stopAudio();
andrewm@0 190 gPRU->cleanupGPIO();
andrewm@0 191 }
andrewm@0 192 }
andrewm@0 193
andrewm@0 194 if(gRTAudioVerbose == 1)
andrewm@0 195 rt_printf("audio thread ended\n");
andrewm@0 196 }
andrewm@0 197
andrewm@0 198 // Create a calculation loop which can run independently of the audio, at a different
andrewm@0 199 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
andrewm@0 200 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@0 201 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 202 {
andrewm@0 203 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 204
andrewm@0 205 // Attempt to create the task
andrewm@0 206 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 207 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 208 free(newTask);
andrewm@0 209 return 0;
andrewm@0 210 }
andrewm@0 211
andrewm@0 212 // Populate the rest of the data structure and store it in the vector
andrewm@0 213 newTask->function = functionToCall;
andrewm@0 214 newTask->name = strdup(name);
andrewm@0 215 newTask->priority = priority;
andrewm@0 216
andrewm@0 217 gAuxTasks.push_back(newTask);
andrewm@0 218
andrewm@0 219 return (AuxiliaryTask)newTask;
andrewm@0 220 }
andrewm@0 221
andrewm@0 222 // Schedule a previously created auxiliary task. It will run when the priority rules next
andrewm@0 223 // allow it to be scheduled.
andrewm@0 224 void scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 225 {
andrewm@0 226 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
andrewm@0 227
andrewm@0 228 rt_task_resume(&taskToSchedule->task);
andrewm@0 229 }
andrewm@0 230
andrewm@0 231 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 232 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 233 // Treat the argument as containing the task structure
andrewm@0 234 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 235 {
andrewm@0 236 // Get function to call from the argument
andrewm@0 237 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 238 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 239
andrewm@0 240 // Wait for a notification
andrewm@0 241 rt_task_suspend(NULL);
andrewm@0 242
andrewm@0 243 while(!gShouldStop) {
andrewm@0 244 // Then run the calculations
andrewm@0 245 auxiliary_function();
andrewm@0 246
andrewm@0 247 // Wait for a notification
andrewm@0 248 rt_task_suspend(NULL);
andrewm@0 249 }
andrewm@0 250
andrewm@0 251 if(gRTAudioVerbose == 1)
andrewm@0 252 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 253 }
andrewm@0 254
andrewm@0 255 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 256 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 257 // on success.
andrewm@0 258
andrewm@5 259 int BeagleRT_startAudio()
andrewm@0 260 {
andrewm@0 261 // Create audio thread with the highest priority
andrewm@0 262 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
andrewm@0 263 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 264 return -1;
andrewm@0 265 }
andrewm@0 266
andrewm@0 267 // Start all RT threads
andrewm@0 268 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 269 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 270 return -1;
andrewm@0 271 }
andrewm@0 272
andrewm@0 273 // The user may have created other tasks. Start those also.
andrewm@0 274 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 275 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 276 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 277
andrewm@0 278 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
andrewm@0 279 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
andrewm@0 280 return -1;
andrewm@0 281 }
andrewm@0 282 }
andrewm@0 283
andrewm@0 284 return 0;
andrewm@0 285 }
andrewm@0 286
andrewm@0 287 // Stop the PRU-based audio from running and wait
andrewm@0 288 // for the tasks to complete before returning.
andrewm@0 289
andrewm@5 290 void BeagleRT_stopAudio()
andrewm@0 291 {
andrewm@0 292 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 293 gShouldStop = true;
andrewm@0 294
andrewm@5 295 if(gRTAudioVerbose)
andrewm@5 296 cout << "Stopping audio...\n";
andrewm@5 297
andrewm@0 298 // Now wait for threads to respond and actually stop...
andrewm@0 299 rt_task_join(&gRTAudioThread);
andrewm@0 300
andrewm@0 301 // Stop all the auxiliary threads too
andrewm@0 302 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 303 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 304 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 305
andrewm@0 306 // Wake up each thread and join it
andrewm@0 307 rt_task_resume(&(taskStruct->task));
andrewm@0 308 rt_task_join(&(taskStruct->task));
andrewm@0 309 }
andrewm@0 310 }
andrewm@0 311
andrewm@0 312 // Free any resources associated with PRU real-time audio
andrewm@5 313 void BeagleRT_cleanupAudio()
andrewm@0 314 {
andrewm@0 315 cleanup_render();
andrewm@0 316
andrewm@0 317 // Clean up the auxiliary tasks
andrewm@0 318 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 319 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 320 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 321
andrewm@0 322 // Free the name string and the struct itself
andrewm@0 323 free(taskStruct->name);
andrewm@0 324 free(taskStruct);
andrewm@0 325 }
andrewm@0 326 gAuxTasks.clear();
andrewm@0 327
andrewm@0 328 if(gPRU != 0)
andrewm@0 329 delete gPRU;
andrewm@0 330 if(gAudioCodec != 0)
andrewm@0 331 delete gAudioCodec;
andrewm@0 332
andrewm@0 333 if(gAmplifierMutePin >= 0)
andrewm@0 334 gpio_unexport(gAmplifierMutePin);
andrewm@0 335 gAmplifierMutePin = -1;
andrewm@0 336 }
andrewm@0 337
andrewm@5 338 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 339 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 340 int BeagleRT_setDACLevel(float decibels)
andrewm@5 341 {
andrewm@5 342 if(gAudioCodec == 0)
andrewm@5 343 return -1;
andrewm@5 344 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 345 }
andrewm@5 346
andrewm@5 347 // Set the level of the ADC
andrewm@5 348 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 349 int BeagleRT_setADCLevel(float decibels)
andrewm@5 350 {
andrewm@5 351 if(gAudioCodec == 0)
andrewm@5 352 return -1;
andrewm@5 353 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 354 }
andrewm@5 355
andrewm@5 356 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 357 // output only (not line out or speaker)
andrewm@5 358 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 359 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 360 {
andrewm@5 361 if(gAudioCodec == 0)
andrewm@5 362 return -1;
andrewm@5 363 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 364 }
andrewm@5 365
andrewm@5 366 // Mute or unmute the onboard speaker amplifiers
andrewm@5 367 // mute == 0 means unmute; otherwise mute
andrewm@5 368 // Returns 0 on success
andrewm@5 369 int BeagleRT_muteSpeakers(int mute)
andrewm@5 370 {
andrewm@5 371 int pinValue = mute ? LOW : HIGH;
andrewm@5 372
andrewm@5 373 // Check that we have an enabled pin for controlling the mute
andrewm@5 374 if(gAmplifierMutePin < 0)
andrewm@5 375 return -1;
andrewm@5 376
andrewm@5 377 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 378 }
andrewm@5 379
andrewm@0 380 // Set the verbosity level
andrewm@0 381 void setVerboseLevel(int level)
andrewm@0 382 {
andrewm@0 383 gRTAudioVerbose = level;
andrewm@0 384 }