annotate core/RTAudio.cpp @ 2:021ac8a1a4f9

_new FIR filter example
author Victor Zappi <victor.zappi@qmul.ac.uk>
date Thu, 06 Nov 2014 15:59:16 +0000
parents 8a575ba3ab52
children 09f03ac40fcc
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@0 27 #include <rtdk.h>
andrewm@0 28
andrewm@0 29 #include "../include/RTAudio.h"
andrewm@0 30 #include "../include/PRU.h"
andrewm@0 31 #include "../include/I2c_Codec.h"
andrewm@0 32 #include "../include/render.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@0 35 using namespace std;
andrewm@0 36
andrewm@0 37 // Data structure to keep track of auxiliary tasks we
andrewm@0 38 // can schedule
andrewm@0 39 typedef struct {
andrewm@0 40 RT_TASK task;
andrewm@0 41 void (*function)(void);
andrewm@0 42 char *name;
andrewm@0 43 int priority;
andrewm@0 44 } InternalAuxiliaryTask;
andrewm@0 45
andrewm@0 46 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@0 47 const char gRTCalculationThreadNameMedium[] = "dbox-calculation-medium";
andrewm@0 48 const char gRTCalculationThreadNameLow[] = "dbox-calculation-low";
andrewm@0 49
andrewm@0 50 // Real-time tasks and objects
andrewm@0 51 RT_TASK gRTAudioThread;
andrewm@0 52 PRU *gPRU = 0;
andrewm@0 53 I2c_Codec *gAudioCodec = 0;
andrewm@0 54
andrewm@0 55 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 56
andrewm@0 57 // Flag which tells the audio task to stop
andrewm@0 58 bool gShouldStop = false;
andrewm@0 59
andrewm@0 60 // general settings
andrewm@0 61 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 62 char gPRUFilename[256] = "pru_rtaudio.bin"; // path to PRU binary file
andrewm@0 63 int gAmplifierMutePin = -1;
andrewm@0 64
andrewm@0 65
andrewm@0 66 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 67 // audio, but does not actually start the calculations.
andrewm@0 68 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 69 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 70 // plus any latency inherent in the ADCs and DACs themselves.
andrewm@0 71 // useMatrix indicates whether to use the ADC and DAC or just the audio codec.
andrewm@0 72 // userData is an opaque pointer which will be passed through to the initialise_render()
andrewm@0 73 // function for application-specific use
andrewm@0 74 //
andrewm@0 75 // Returns 0 on success.
andrewm@0 76
andrewm@0 77 int initAudio(int periodSize, int useMatrix,
andrewm@0 78 void *userData,
andrewm@0 79 int codecI2CAddress, int ampMutePin)
andrewm@0 80 {
andrewm@0 81 rt_print_auto_init(1);
andrewm@0 82 if(gRTAudioVerbose == 1)
andrewm@0 83 rt_printf("Running with Xenomai\n");
andrewm@0 84
andrewm@0 85 if(gRTAudioVerbose == 1)
andrewm@0 86 cout << "---------------->Init Audio Thread" << endl;
andrewm@0 87
andrewm@0 88 // Prepare GPIO pins for amplifier mute and status LED
andrewm@0 89 if(ampMutePin >= 0) {
andrewm@0 90 gAmplifierMutePin = ampMutePin;
andrewm@0 91
andrewm@0 92 if(gpio_export(ampMutePin)) {
andrewm@0 93 if(gRTAudioVerbose)
andrewm@0 94 cout << "Warning: couldn't export amplifier mute pin\n";
andrewm@0 95 }
andrewm@0 96 if(gpio_set_dir(ampMutePin, OUTPUT_PIN)) {
andrewm@0 97 if(gRTAudioVerbose)
andrewm@0 98 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 99 return -1;
andrewm@0 100 }
andrewm@0 101 if(gpio_set_value(ampMutePin, LOW)) {
andrewm@0 102 if(gRTAudioVerbose)
andrewm@0 103 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 104 return -1;
andrewm@0 105 }
andrewm@0 106 }
andrewm@0 107
andrewm@0 108 // Use PRU for audio
andrewm@0 109 gPRU = new PRU();
andrewm@0 110 gAudioCodec = new I2c_Codec();
andrewm@0 111
andrewm@0 112 if(gPRU->prepareGPIO(useMatrix, 1, 1)) {
andrewm@0 113 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 114 return 1;
andrewm@0 115 }
andrewm@0 116 if(gPRU->initialise(0, periodSize, true)) {
andrewm@0 117 cout << "Error: unable to initialise PRU\n";
andrewm@0 118 return 1;
andrewm@0 119 }
andrewm@0 120 if(gAudioCodec->initI2C_RW(2, codecI2CAddress, -1)) {
andrewm@0 121 cout << "Unable to open codec I2C\n";
andrewm@0 122 return 1;
andrewm@0 123 }
andrewm@0 124 if(gAudioCodec->initCodec()) {
andrewm@0 125 cout << "Error: unable to initialise audio codec\n";
andrewm@0 126 return 1;
andrewm@0 127 }
andrewm@0 128 gAudioCodec->setDACVolume(0); // Set the DAC volume to full-scale
andrewm@0 129 gAudioCodec->setHPVolume(-12); // Headphones 6dB down
andrewm@0 130 gAudioCodec->setADCVolume(-12); // Set the ADC volume to 6dB down
andrewm@0 131
andrewm@0 132 if(!initialise_render(2, useMatrix ? periodSize : 0, periodSize * 2, 22050.0, 44100.0, userData)) {
andrewm@0 133 cout << "Couldn't initialise audio rendering\n";
andrewm@0 134 return 1;
andrewm@0 135 }
andrewm@0 136
andrewm@0 137 return 0;
andrewm@0 138 }
andrewm@0 139
andrewm@0 140 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 141 // and then transfers control to the PRU object. The PRU object in
andrewm@0 142 // turn will call the audio render() callback function every time
andrewm@0 143 // there is new data to process.
andrewm@0 144
andrewm@0 145 void audioLoop(void *)
andrewm@0 146 {
andrewm@0 147 if(gRTAudioVerbose==1)
andrewm@0 148 rt_printf("_________________Audio Thread!\n");
andrewm@0 149
andrewm@0 150 // PRU audio
andrewm@0 151 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 152
andrewm@0 153 if(gAudioCodec->startAudio(0)) {
andrewm@0 154 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 155 gShouldStop = 1;
andrewm@0 156 }
andrewm@0 157 else {
andrewm@0 158 if(gPRU->start(gPRUFilename)) {
andrewm@0 159 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 160 gShouldStop = 1;
andrewm@0 161 }
andrewm@0 162 else {
andrewm@0 163 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@0 164 // First unmute the amplifier
andrewm@0 165 if(gpio_set_value(gAmplifierMutePin, HIGH)) {
andrewm@0 166 if(gRTAudioVerbose)
andrewm@0 167 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@0 168 }
andrewm@0 169
andrewm@0 170 gPRU->loop();
andrewm@0 171
andrewm@0 172 // Now clean up
andrewm@0 173 // gPRU->waitForFinish();
andrewm@0 174 gPRU->disable();
andrewm@0 175 gAudioCodec->stopAudio();
andrewm@0 176 gPRU->cleanupGPIO();
andrewm@0 177 }
andrewm@0 178 }
andrewm@0 179
andrewm@0 180 if(gRTAudioVerbose == 1)
andrewm@0 181 rt_printf("audio thread ended\n");
andrewm@0 182 }
andrewm@0 183
andrewm@0 184 // Create a calculation loop which can run independently of the audio, at a different
andrewm@0 185 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
andrewm@0 186 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@0 187 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 188 {
andrewm@0 189 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 190
andrewm@0 191 // Attempt to create the task
andrewm@0 192 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 193 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 194 free(newTask);
andrewm@0 195 return 0;
andrewm@0 196 }
andrewm@0 197
andrewm@0 198 // Populate the rest of the data structure and store it in the vector
andrewm@0 199 newTask->function = functionToCall;
andrewm@0 200 newTask->name = strdup(name);
andrewm@0 201 newTask->priority = priority;
andrewm@0 202
andrewm@0 203 gAuxTasks.push_back(newTask);
andrewm@0 204
andrewm@0 205 return (AuxiliaryTask)newTask;
andrewm@0 206 }
andrewm@0 207
andrewm@0 208 // Schedule a previously created auxiliary task. It will run when the priority rules next
andrewm@0 209 // allow it to be scheduled.
andrewm@0 210 void scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 211 {
andrewm@0 212 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
andrewm@0 213
andrewm@0 214 rt_task_resume(&taskToSchedule->task);
andrewm@0 215 }
andrewm@0 216
andrewm@0 217 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 218 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 219 // Treat the argument as containing the task structure
andrewm@0 220 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 221 {
andrewm@0 222 // Get function to call from the argument
andrewm@0 223 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 224 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 225
andrewm@0 226 // Wait for a notification
andrewm@0 227 rt_task_suspend(NULL);
andrewm@0 228
andrewm@0 229 while(!gShouldStop) {
andrewm@0 230 // Then run the calculations
andrewm@0 231 auxiliary_function();
andrewm@0 232
andrewm@0 233 // Wait for a notification
andrewm@0 234 rt_task_suspend(NULL);
andrewm@0 235 }
andrewm@0 236
andrewm@0 237 if(gRTAudioVerbose == 1)
andrewm@0 238 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 239 }
andrewm@0 240
andrewm@0 241 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 242 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 243 // on success.
andrewm@0 244
andrewm@0 245 int startAudio()
andrewm@0 246 {
andrewm@0 247 // Create audio thread with the highest priority
andrewm@0 248 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
andrewm@0 249 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 250 return -1;
andrewm@0 251 }
andrewm@0 252
andrewm@0 253 // Start all RT threads
andrewm@0 254 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 255 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 256 return -1;
andrewm@0 257 }
andrewm@0 258
andrewm@0 259 // The user may have created other tasks. Start those also.
andrewm@0 260 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 261 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 262 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 263
andrewm@0 264 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
andrewm@0 265 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
andrewm@0 266 return -1;
andrewm@0 267 }
andrewm@0 268 }
andrewm@0 269
andrewm@0 270 return 0;
andrewm@0 271 }
andrewm@0 272
andrewm@0 273 // Stop the PRU-based audio from running and wait
andrewm@0 274 // for the tasks to complete before returning.
andrewm@0 275
andrewm@0 276 void stopAudio()
andrewm@0 277 {
andrewm@0 278 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 279 gShouldStop = true;
andrewm@0 280
andrewm@0 281 // Now wait for threads to respond and actually stop...
andrewm@0 282 rt_task_join(&gRTAudioThread);
andrewm@0 283
andrewm@0 284 // Stop all the auxiliary threads too
andrewm@0 285 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 286 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 287 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 288
andrewm@0 289 // Wake up each thread and join it
andrewm@0 290 rt_task_resume(&(taskStruct->task));
andrewm@0 291 rt_task_join(&(taskStruct->task));
andrewm@0 292 }
andrewm@0 293 }
andrewm@0 294
andrewm@0 295 // Free any resources associated with PRU real-time audio
andrewm@0 296 void cleanupAudio()
andrewm@0 297 {
andrewm@0 298 cleanup_render();
andrewm@0 299
andrewm@0 300 // Clean up the auxiliary tasks
andrewm@0 301 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 302 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 303 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 304
andrewm@0 305 // Free the name string and the struct itself
andrewm@0 306 free(taskStruct->name);
andrewm@0 307 free(taskStruct);
andrewm@0 308 }
andrewm@0 309 gAuxTasks.clear();
andrewm@0 310
andrewm@0 311 if(gPRU != 0)
andrewm@0 312 delete gPRU;
andrewm@0 313 if(gAudioCodec != 0)
andrewm@0 314 delete gAudioCodec;
andrewm@0 315
andrewm@0 316 if(gAmplifierMutePin >= 0)
andrewm@0 317 gpio_unexport(gAmplifierMutePin);
andrewm@0 318 gAmplifierMutePin = -1;
andrewm@0 319 }
andrewm@0 320
andrewm@0 321 // Set the verbosity level
andrewm@0 322 void setVerboseLevel(int level)
andrewm@0 323 {
andrewm@0 324 gRTAudioVerbose = level;
andrewm@0 325 }