annotate Lib/fftw-3.2.1/cell/spu/spu_t1fv_12.spuc @ 5:a6bfbc7cb449

Remove crap
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Wed, 22 Jul 2015 14:58:31 +0100
parents 25bf17994ef1
children
rev   line source
d@0 1 /*
d@0 2 * Copyright (c) 2003, 2007-8 Matteo Frigo
d@0 3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
d@0 4 *
d@0 5 * This program is free software; you can redistribute it and/or modify
d@0 6 * it under the terms of the GNU General Public License as published by
d@0 7 * the Free Software Foundation; either version 2 of the License, or
d@0 8 * (at your option) any later version.
d@0 9 *
d@0 10 * This program is distributed in the hope that it will be useful,
d@0 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
d@0 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
d@0 13 * GNU General Public License for more details.
d@0 14 *
d@0 15 * You should have received a copy of the GNU General Public License
d@0 16 * along with this program; if not, write to the Free Software
d@0 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
d@0 18 *
d@0 19 */
d@0 20 /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 12 -name X(spu_t1fv_12) */
d@0 21
d@0 22 /*
d@0 23 * This function contains 59 FP additions, 42 FP multiplications,
d@0 24 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
d@0 25 * 75 stack variables, 2 constants, and 24 memory accesses
d@0 26 */
d@0 27 #include "fftw-spu.h"
d@0 28
d@0 29 void X(spu_t1fv_12) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) {
d@0 30 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
d@0 31 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
d@0 32 INT m;
d@0 33 R *x;
d@0 34 x = ri;
d@0 35 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(rs)) {
d@0 36 V TY, T7, Tf, TZ, TE, TQ, T11, Tw, TA, T12, Tr, TP, T1, T3, Td;
d@0 37 V Tb, T9, T5, T2, Tc, Ta, T8, T4, TC, T6, TD, Te, Ti, Tk, Ty;
d@0 38 V Tu, Tp, Tn, Th, Tj, Tx, Tt, To, Tm, Tl, Tv, Tq, Tz, T16, T17;
d@0 39 V T14, T15, T10, T13, T18, T19, TM, TN, TI, Ts, TF, TJ, Tg, TB, TH;
d@0 40 V TK, TG, TL, TR, TV, TO, TU, TT, TW, TS, TX;
d@0 41 T1 = LD(&(x[0]), ms, &(x[0]));
d@0 42 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
d@0 43 T3 = BYTWJ(&(W[TWVL * 6]), T2);
d@0 44 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
d@0 45 Td = BYTWJ(&(W[TWVL * 2]), Tc);
d@0 46 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
d@0 47 Tb = BYTWJ(&(W[TWVL * 18]), Ta);
d@0 48 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
d@0 49 T9 = BYTWJ(&(W[TWVL * 10]), T8);
d@0 50 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
d@0 51 T5 = BYTWJ(&(W[TWVL * 14]), T4);
d@0 52 T6 = VADD(T3, T5);
d@0 53 TC = VSUB(T5, T3);
d@0 54 TY = VADD(T1, T6);
d@0 55 T7 = VFNMS(LDK(KP500000000), T6, T1);
d@0 56 TD = VSUB(Td, Tb);
d@0 57 Te = VADD(Tb, Td);
d@0 58 Tf = VFNMS(LDK(KP500000000), Te, T9);
d@0 59 TZ = VADD(T9, Te);
d@0 60 TE = VSUB(TC, TD);
d@0 61 TQ = VADD(TC, TD);
d@0 62 Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
d@0 63 Ti = BYTWJ(&(W[TWVL * 20]), Th);
d@0 64 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
d@0 65 Tk = BYTWJ(&(W[TWVL * 12]), Tj);
d@0 66 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
d@0 67 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
d@0 68 Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
d@0 69 Tu = BYTWJ(&(W[TWVL * 4]), Tt);
d@0 70 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
d@0 71 Tp = BYTWJ(&(W[TWVL * 8]), To);
d@0 72 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
d@0 73 Tn = BYTWJ(&(W[0]), Tm);
d@0 74 Tv = VADD(Tk, Ti);
d@0 75 Tl = VSUB(Ti, Tk);
d@0 76 T11 = VADD(Tu, Tv);
d@0 77 Tw = VFNMS(LDK(KP500000000), Tv, Tu);
d@0 78 Tq = VSUB(Tn, Tp);
d@0 79 Tz = VADD(Tn, Tp);
d@0 80 TA = VFNMS(LDK(KP500000000), Tz, Ty);
d@0 81 T12 = VADD(Ty, Tz);
d@0 82 Tr = VADD(Tl, Tq);
d@0 83 TP = VSUB(Tl, Tq);
d@0 84 T10 = VSUB(TY, TZ);
d@0 85 T16 = VADD(TY, TZ);
d@0 86 T17 = VADD(T11, T12);
d@0 87 T13 = VSUB(T11, T12);
d@0 88 T14 = VFNMSI(T13, T10);
d@0 89 T15 = VFMAI(T13, T10);
d@0 90 ST(&(x[WS(rs, 9)]), T14, ms, &(x[WS(rs, 1)]));
d@0 91 ST(&(x[WS(rs, 3)]), T15, ms, &(x[WS(rs, 1)]));
d@0 92 T18 = VSUB(T16, T17);
d@0 93 T19 = VADD(T16, T17);
d@0 94 ST(&(x[WS(rs, 6)]), T18, ms, &(x[0]));
d@0 95 ST(&(x[0]), T19, ms, &(x[0]));
d@0 96 Tg = VSUB(T7, Tf);
d@0 97 TM = VADD(T7, Tf);
d@0 98 TI = VFNMS(LDK(KP866025403), Tr, Tg);
d@0 99 Ts = VFMA(LDK(KP866025403), Tr, Tg);
d@0 100 TN = VADD(Tw, TA);
d@0 101 TB = VSUB(Tw, TA);
d@0 102 TF = VFNMS(LDK(KP866025403), TE, TB);
d@0 103 TJ = VFMA(LDK(KP866025403), TE, TB);
d@0 104 TG = VFNMSI(TF, Ts);
d@0 105 TH = VFMAI(TF, Ts);
d@0 106 ST(&(x[WS(rs, 1)]), TG, ms, &(x[WS(rs, 1)]));
d@0 107 TL = VFMAI(TJ, TI);
d@0 108 TK = VFNMSI(TJ, TI);
d@0 109 ST(&(x[WS(rs, 7)]), TL, ms, &(x[WS(rs, 1)]));
d@0 110 ST(&(x[WS(rs, 11)]), TH, ms, &(x[WS(rs, 1)]));
d@0 111 ST(&(x[WS(rs, 5)]), TK, ms, &(x[WS(rs, 1)]));
d@0 112 TR = VMUL(LDK(KP866025403), VSUB(TP, TQ));
d@0 113 TV = VMUL(LDK(KP866025403), VADD(TQ, TP));
d@0 114 TO = VSUB(TM, TN);
d@0 115 TU = VADD(TM, TN);
d@0 116 TS = VFMAI(TR, TO);
d@0 117 TT = VFNMSI(TR, TO);
d@0 118 ST(&(x[WS(rs, 2)]), TS, ms, &(x[0]));
d@0 119 TX = VFNMSI(TV, TU);
d@0 120 TW = VFMAI(TV, TU);
d@0 121 ST(&(x[WS(rs, 8)]), TX, ms, &(x[0]));
d@0 122 ST(&(x[WS(rs, 10)]), TT, ms, &(x[0]));
d@0 123 ST(&(x[WS(rs, 4)]), TW, ms, &(x[0]));
d@0 124 }
d@0 125 }