d@0
|
1 /*
|
d@0
|
2 * Copyright (c) 2003, 2007-8 Matteo Frigo
|
d@0
|
3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
|
d@0
|
4 *
|
d@0
|
5 * This program is free software; you can redistribute it and/or modify
|
d@0
|
6 * it under the terms of the GNU General Public License as published by
|
d@0
|
7 * the Free Software Foundation; either version 2 of the License, or
|
d@0
|
8 * (at your option) any later version.
|
d@0
|
9 *
|
d@0
|
10 * This program is distributed in the hope that it will be useful,
|
d@0
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
d@0
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
d@0
|
13 * GNU General Public License for more details.
|
d@0
|
14 *
|
d@0
|
15 * You should have received a copy of the GNU General Public License
|
d@0
|
16 * along with this program; if not, write to the Free Software
|
d@0
|
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
d@0
|
18 *
|
d@0
|
19 */
|
d@0
|
20 /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 12 -name X(spu_t1fv_12) */
|
d@0
|
21
|
d@0
|
22 /*
|
d@0
|
23 * This function contains 59 FP additions, 42 FP multiplications,
|
d@0
|
24 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
|
d@0
|
25 * 75 stack variables, 2 constants, and 24 memory accesses
|
d@0
|
26 */
|
d@0
|
27 #include "fftw-spu.h"
|
d@0
|
28
|
d@0
|
29 void X(spu_t1fv_12) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) {
|
d@0
|
30 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
d@0
|
31 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
d@0
|
32 INT m;
|
d@0
|
33 R *x;
|
d@0
|
34 x = ri;
|
d@0
|
35 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(rs)) {
|
d@0
|
36 V TY, T7, Tf, TZ, TE, TQ, T11, Tw, TA, T12, Tr, TP, T1, T3, Td;
|
d@0
|
37 V Tb, T9, T5, T2, Tc, Ta, T8, T4, TC, T6, TD, Te, Ti, Tk, Ty;
|
d@0
|
38 V Tu, Tp, Tn, Th, Tj, Tx, Tt, To, Tm, Tl, Tv, Tq, Tz, T16, T17;
|
d@0
|
39 V T14, T15, T10, T13, T18, T19, TM, TN, TI, Ts, TF, TJ, Tg, TB, TH;
|
d@0
|
40 V TK, TG, TL, TR, TV, TO, TU, TT, TW, TS, TX;
|
d@0
|
41 T1 = LD(&(x[0]), ms, &(x[0]));
|
d@0
|
42 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
d@0
|
43 T3 = BYTWJ(&(W[TWVL * 6]), T2);
|
d@0
|
44 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
d@0
|
45 Td = BYTWJ(&(W[TWVL * 2]), Tc);
|
d@0
|
46 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
d@0
|
47 Tb = BYTWJ(&(W[TWVL * 18]), Ta);
|
d@0
|
48 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
d@0
|
49 T9 = BYTWJ(&(W[TWVL * 10]), T8);
|
d@0
|
50 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
d@0
|
51 T5 = BYTWJ(&(W[TWVL * 14]), T4);
|
d@0
|
52 T6 = VADD(T3, T5);
|
d@0
|
53 TC = VSUB(T5, T3);
|
d@0
|
54 TY = VADD(T1, T6);
|
d@0
|
55 T7 = VFNMS(LDK(KP500000000), T6, T1);
|
d@0
|
56 TD = VSUB(Td, Tb);
|
d@0
|
57 Te = VADD(Tb, Td);
|
d@0
|
58 Tf = VFNMS(LDK(KP500000000), Te, T9);
|
d@0
|
59 TZ = VADD(T9, Te);
|
d@0
|
60 TE = VSUB(TC, TD);
|
d@0
|
61 TQ = VADD(TC, TD);
|
d@0
|
62 Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
63 Ti = BYTWJ(&(W[TWVL * 20]), Th);
|
d@0
|
64 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
65 Tk = BYTWJ(&(W[TWVL * 12]), Tj);
|
d@0
|
66 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
67 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
|
d@0
|
68 Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
69 Tu = BYTWJ(&(W[TWVL * 4]), Tt);
|
d@0
|
70 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
71 Tp = BYTWJ(&(W[TWVL * 8]), To);
|
d@0
|
72 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
d@0
|
73 Tn = BYTWJ(&(W[0]), Tm);
|
d@0
|
74 Tv = VADD(Tk, Ti);
|
d@0
|
75 Tl = VSUB(Ti, Tk);
|
d@0
|
76 T11 = VADD(Tu, Tv);
|
d@0
|
77 Tw = VFNMS(LDK(KP500000000), Tv, Tu);
|
d@0
|
78 Tq = VSUB(Tn, Tp);
|
d@0
|
79 Tz = VADD(Tn, Tp);
|
d@0
|
80 TA = VFNMS(LDK(KP500000000), Tz, Ty);
|
d@0
|
81 T12 = VADD(Ty, Tz);
|
d@0
|
82 Tr = VADD(Tl, Tq);
|
d@0
|
83 TP = VSUB(Tl, Tq);
|
d@0
|
84 T10 = VSUB(TY, TZ);
|
d@0
|
85 T16 = VADD(TY, TZ);
|
d@0
|
86 T17 = VADD(T11, T12);
|
d@0
|
87 T13 = VSUB(T11, T12);
|
d@0
|
88 T14 = VFNMSI(T13, T10);
|
d@0
|
89 T15 = VFMAI(T13, T10);
|
d@0
|
90 ST(&(x[WS(rs, 9)]), T14, ms, &(x[WS(rs, 1)]));
|
d@0
|
91 ST(&(x[WS(rs, 3)]), T15, ms, &(x[WS(rs, 1)]));
|
d@0
|
92 T18 = VSUB(T16, T17);
|
d@0
|
93 T19 = VADD(T16, T17);
|
d@0
|
94 ST(&(x[WS(rs, 6)]), T18, ms, &(x[0]));
|
d@0
|
95 ST(&(x[0]), T19, ms, &(x[0]));
|
d@0
|
96 Tg = VSUB(T7, Tf);
|
d@0
|
97 TM = VADD(T7, Tf);
|
d@0
|
98 TI = VFNMS(LDK(KP866025403), Tr, Tg);
|
d@0
|
99 Ts = VFMA(LDK(KP866025403), Tr, Tg);
|
d@0
|
100 TN = VADD(Tw, TA);
|
d@0
|
101 TB = VSUB(Tw, TA);
|
d@0
|
102 TF = VFNMS(LDK(KP866025403), TE, TB);
|
d@0
|
103 TJ = VFMA(LDK(KP866025403), TE, TB);
|
d@0
|
104 TG = VFNMSI(TF, Ts);
|
d@0
|
105 TH = VFMAI(TF, Ts);
|
d@0
|
106 ST(&(x[WS(rs, 1)]), TG, ms, &(x[WS(rs, 1)]));
|
d@0
|
107 TL = VFMAI(TJ, TI);
|
d@0
|
108 TK = VFNMSI(TJ, TI);
|
d@0
|
109 ST(&(x[WS(rs, 7)]), TL, ms, &(x[WS(rs, 1)]));
|
d@0
|
110 ST(&(x[WS(rs, 11)]), TH, ms, &(x[WS(rs, 1)]));
|
d@0
|
111 ST(&(x[WS(rs, 5)]), TK, ms, &(x[WS(rs, 1)]));
|
d@0
|
112 TR = VMUL(LDK(KP866025403), VSUB(TP, TQ));
|
d@0
|
113 TV = VMUL(LDK(KP866025403), VADD(TQ, TP));
|
d@0
|
114 TO = VSUB(TM, TN);
|
d@0
|
115 TU = VADD(TM, TN);
|
d@0
|
116 TS = VFMAI(TR, TO);
|
d@0
|
117 TT = VFNMSI(TR, TO);
|
d@0
|
118 ST(&(x[WS(rs, 2)]), TS, ms, &(x[0]));
|
d@0
|
119 TX = VFNMSI(TV, TU);
|
d@0
|
120 TW = VFMAI(TV, TU);
|
d@0
|
121 ST(&(x[WS(rs, 8)]), TX, ms, &(x[0]));
|
d@0
|
122 ST(&(x[WS(rs, 10)]), TT, ms, &(x[0]));
|
d@0
|
123 ST(&(x[WS(rs, 4)]), TW, ms, &(x[0]));
|
d@0
|
124 }
|
d@0
|
125 }
|