d@0: /* d@0: * Copyright (c) 2003, 2007-8 Matteo Frigo d@0: * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology d@0: * d@0: * This program is free software; you can redistribute it and/or modify d@0: * it under the terms of the GNU General Public License as published by d@0: * the Free Software Foundation; either version 2 of the License, or d@0: * (at your option) any later version. d@0: * d@0: * This program is distributed in the hope that it will be useful, d@0: * but WITHOUT ANY WARRANTY; without even the implied warranty of d@0: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the d@0: * GNU General Public License for more details. d@0: * d@0: * You should have received a copy of the GNU General Public License d@0: * along with this program; if not, write to the Free Software d@0: * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA d@0: * d@0: */ d@0: /* Generated by: ../../genfft/gen_twiddle_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -include fftw-spu.h -trivial-stores -n 12 -name X(spu_t1fv_12) */ d@0: d@0: /* d@0: * This function contains 59 FP additions, 42 FP multiplications, d@0: * (or, 41 additions, 24 multiplications, 18 fused multiply/add), d@0: * 75 stack variables, 2 constants, and 24 memory accesses d@0: */ d@0: #include "fftw-spu.h" d@0: d@0: void X(spu_t1fv_12) (R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { d@0: DVK(KP866025403, +0.866025403784438646763723170752936183471402627); d@0: DVK(KP500000000, +0.500000000000000000000000000000000000000000000); d@0: INT m; d@0: R *x; d@0: x = ri; d@0: for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(rs)) { d@0: V TY, T7, Tf, TZ, TE, TQ, T11, Tw, TA, T12, Tr, TP, T1, T3, Td; d@0: V Tb, T9, T5, T2, Tc, Ta, T8, T4, TC, T6, TD, Te, Ti, Tk, Ty; d@0: V Tu, Tp, Tn, Th, Tj, Tx, Tt, To, Tm, Tl, Tv, Tq, Tz, T16, T17; d@0: V T14, T15, T10, T13, T18, T19, TM, TN, TI, Ts, TF, TJ, Tg, TB, TH; d@0: V TK, TG, TL, TR, TV, TO, TU, TT, TW, TS, TX; d@0: T1 = LD(&(x[0]), ms, &(x[0])); d@0: T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); d@0: T3 = BYTWJ(&(W[TWVL * 6]), T2); d@0: Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); d@0: Td = BYTWJ(&(W[TWVL * 2]), Tc); d@0: Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); d@0: Tb = BYTWJ(&(W[TWVL * 18]), Ta); d@0: T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); d@0: T9 = BYTWJ(&(W[TWVL * 10]), T8); d@0: T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); d@0: T5 = BYTWJ(&(W[TWVL * 14]), T4); d@0: T6 = VADD(T3, T5); d@0: TC = VSUB(T5, T3); d@0: TY = VADD(T1, T6); d@0: T7 = VFNMS(LDK(KP500000000), T6, T1); d@0: TD = VSUB(Td, Tb); d@0: Te = VADD(Tb, Td); d@0: Tf = VFNMS(LDK(KP500000000), Te, T9); d@0: TZ = VADD(T9, Te); d@0: TE = VSUB(TC, TD); d@0: TQ = VADD(TC, TD); d@0: Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); d@0: Ti = BYTWJ(&(W[TWVL * 20]), Th); d@0: Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); d@0: Tk = BYTWJ(&(W[TWVL * 12]), Tj); d@0: Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); d@0: Ty = BYTWJ(&(W[TWVL * 16]), Tx); d@0: Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); d@0: Tu = BYTWJ(&(W[TWVL * 4]), Tt); d@0: To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); d@0: Tp = BYTWJ(&(W[TWVL * 8]), To); d@0: Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); d@0: Tn = BYTWJ(&(W[0]), Tm); d@0: Tv = VADD(Tk, Ti); d@0: Tl = VSUB(Ti, Tk); d@0: T11 = VADD(Tu, Tv); d@0: Tw = VFNMS(LDK(KP500000000), Tv, Tu); d@0: Tq = VSUB(Tn, Tp); d@0: Tz = VADD(Tn, Tp); d@0: TA = VFNMS(LDK(KP500000000), Tz, Ty); d@0: T12 = VADD(Ty, Tz); d@0: Tr = VADD(Tl, Tq); d@0: TP = VSUB(Tl, Tq); d@0: T10 = VSUB(TY, TZ); d@0: T16 = VADD(TY, TZ); d@0: T17 = VADD(T11, T12); d@0: T13 = VSUB(T11, T12); d@0: T14 = VFNMSI(T13, T10); d@0: T15 = VFMAI(T13, T10); d@0: ST(&(x[WS(rs, 9)]), T14, ms, &(x[WS(rs, 1)])); d@0: ST(&(x[WS(rs, 3)]), T15, ms, &(x[WS(rs, 1)])); d@0: T18 = VSUB(T16, T17); d@0: T19 = VADD(T16, T17); d@0: ST(&(x[WS(rs, 6)]), T18, ms, &(x[0])); d@0: ST(&(x[0]), T19, ms, &(x[0])); d@0: Tg = VSUB(T7, Tf); d@0: TM = VADD(T7, Tf); d@0: TI = VFNMS(LDK(KP866025403), Tr, Tg); d@0: Ts = VFMA(LDK(KP866025403), Tr, Tg); d@0: TN = VADD(Tw, TA); d@0: TB = VSUB(Tw, TA); d@0: TF = VFNMS(LDK(KP866025403), TE, TB); d@0: TJ = VFMA(LDK(KP866025403), TE, TB); d@0: TG = VFNMSI(TF, Ts); d@0: TH = VFMAI(TF, Ts); d@0: ST(&(x[WS(rs, 1)]), TG, ms, &(x[WS(rs, 1)])); d@0: TL = VFMAI(TJ, TI); d@0: TK = VFNMSI(TJ, TI); d@0: ST(&(x[WS(rs, 7)]), TL, ms, &(x[WS(rs, 1)])); d@0: ST(&(x[WS(rs, 11)]), TH, ms, &(x[WS(rs, 1)])); d@0: ST(&(x[WS(rs, 5)]), TK, ms, &(x[WS(rs, 1)])); d@0: TR = VMUL(LDK(KP866025403), VSUB(TP, TQ)); d@0: TV = VMUL(LDK(KP866025403), VADD(TQ, TP)); d@0: TO = VSUB(TM, TN); d@0: TU = VADD(TM, TN); d@0: TS = VFMAI(TR, TO); d@0: TT = VFNMSI(TR, TO); d@0: ST(&(x[WS(rs, 2)]), TS, ms, &(x[0])); d@0: TX = VFNMSI(TV, TU); d@0: TW = VFMAI(TV, TU); d@0: ST(&(x[WS(rs, 8)]), TX, ms, &(x[0])); d@0: ST(&(x[WS(rs, 10)]), TT, ms, &(x[0])); d@0: ST(&(x[WS(rs, 4)]), TW, ms, &(x[0])); d@0: } d@0: }