annotate Lib/fftw-3.2.1/doc/html/.svn/text-base/The-1d-Real_002ddata-DFT.html.svn-base @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
rev   line source
d@0 1 <html lang="en">
d@0 2 <head>
d@0 3 <title>The 1d Real-data DFT - FFTW 3.2.1</title>
d@0 4 <meta http-equiv="Content-Type" content="text/html">
d@0 5 <meta name="description" content="FFTW 3.2.1">
d@0 6 <meta name="generator" content="makeinfo 4.8">
d@0 7 <link title="Top" rel="start" href="index.html#Top">
d@0 8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
d@0 9 <link rel="prev" href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" title="The 1d Discrete Fourier Transform (DFT)">
d@0 10 <link rel="next" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" title="1d Real-even DFTs (DCTs)">
d@0 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
d@0 12 <!--
d@0 13 This manual is for FFTW
d@0 14 (version 3.2.1, 5 February 2009).
d@0 15
d@0 16 Copyright (C) 2003 Matteo Frigo.
d@0 17
d@0 18 Copyright (C) 2003 Massachusetts Institute of Technology.
d@0 19
d@0 20 Permission is granted to make and distribute verbatim copies of
d@0 21 this manual provided the copyright notice and this permission
d@0 22 notice are preserved on all copies.
d@0 23
d@0 24 Permission is granted to copy and distribute modified versions of
d@0 25 this manual under the conditions for verbatim copying, provided
d@0 26 that the entire resulting derived work is distributed under the
d@0 27 terms of a permission notice identical to this one.
d@0 28
d@0 29 Permission is granted to copy and distribute translations of this
d@0 30 manual into another language, under the above conditions for
d@0 31 modified versions, except that this permission notice may be
d@0 32 stated in a translation approved by the Free Software Foundation.
d@0 33 -->
d@0 34 <meta http-equiv="Content-Style-Type" content="text/css">
d@0 35 <style type="text/css"><!--
d@0 36 pre.display { font-family:inherit }
d@0 37 pre.format { font-family:inherit }
d@0 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
d@0 39 pre.smallformat { font-family:inherit; font-size:smaller }
d@0 40 pre.smallexample { font-size:smaller }
d@0 41 pre.smalllisp { font-size:smaller }
d@0 42 span.sc { font-variant:small-caps }
d@0 43 span.roman { font-family:serif; font-weight:normal; }
d@0 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
d@0 45 --></style>
d@0 46 </head>
d@0 47 <body>
d@0 48 <div class="node">
d@0 49 <p>
d@0 50 <a name="The-1d-Real-data-DFT"></a>
d@0 51 <a name="The-1d-Real_002ddata-DFT"></a>
d@0 52 Next:&nbsp;<a rel="next" accesskey="n" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029">1d Real-even DFTs (DCTs)</a>,
d@0 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029">The 1d Discrete Fourier Transform (DFT)</a>,
d@0 54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
d@0 55 <hr>
d@0 56 </div>
d@0 57
d@0 58 <h4 class="subsection">4.8.2 The 1d Real-data DFT</h4>
d@0 59
d@0 60 <p>The real-input (r2c) DFT in FFTW computes the <em>forward</em> transform
d@0 61 Y of the size <code>n</code> real array X, exactly as defined
d@0 62 above, i.e.
d@0 63 <center><img src="equation-dft.png" align="top">.</center>This output array Y can easily be shown to possess the
d@0 64 &ldquo;Hermitian&rdquo; symmetry
d@0 65 <a name="index-Hermitian-286"></a><i>Y<sub>k</sub> = Y<sub>n-k</sub></i><sup>*</sup>,where we take Y to be periodic so that
d@0 66 <i>Y<sub>n</sub> = Y</i><sub>0</sub>.
d@0 67
d@0 68 <p>As a result of this symmetry, half of the output Y is redundant
d@0 69 (being the complex conjugate of the other half), and so the 1d r2c
d@0 70 transforms only output elements 0<small class="dots">...</small>n/2 of Y
d@0 71 (n/2+1 complex numbers), where the division by 2 is
d@0 72 rounded down.
d@0 73
d@0 74 <p>Moreover, the Hermitian symmetry implies that
d@0 75 <i>Y</i><sub>0</sub>and, if n is even, the
d@0 76 <i>Y</i><sub><i>n</i>/2</sub>element, are purely real. So, for the <code>R2HC</code> r2r transform, these
d@0 77 elements are not stored in the halfcomplex output format.
d@0 78 <a name="index-r2r-287"></a><a name="index-R2HC-288"></a><a name="index-halfcomplex-format-289"></a>
d@0 79 The c2r and <code>H2RC</code> r2r transforms compute the backward DFT of the
d@0 80 <em>complex</em> array X with Hermitian symmetry, stored in the
d@0 81 r2c/<code>R2HC</code> output formats, respectively, where the backward
d@0 82 transform is defined exactly as for the complex case:
d@0 83 <center><img src="equation-idft.png" align="top">.</center>The outputs <code>Y</code> of this transform can easily be seen to be purely
d@0 84 real, and are stored as an array of real numbers.
d@0 85
d@0 86 <p><a name="index-normalization-290"></a>Like FFTW's complex DFT, these transforms are unnormalized. In other
d@0 87 words, applying the real-to-complex (forward) and then the
d@0 88 complex-to-real (backward) transform will multiply the input by
d@0 89 n.
d@0 90
d@0 91 <!-- =========> -->
d@0 92 </body></html>
d@0 93