d@0
|
1 /*
|
d@0
|
2 * Copyright (c) 2003, 2007-8 Matteo Frigo
|
d@0
|
3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
|
d@0
|
4 *
|
d@0
|
5 * This program is free software; you can redistribute it and/or modify
|
d@0
|
6 * it under the terms of the GNU General Public License as published by
|
d@0
|
7 * the Free Software Foundation; either version 2 of the License, or
|
d@0
|
8 * (at your option) any later version.
|
d@0
|
9 *
|
d@0
|
10 * This program is distributed in the hope that it will be useful,
|
d@0
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
d@0
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
d@0
|
13 * GNU General Public License for more details.
|
d@0
|
14 *
|
d@0
|
15 * You should have received a copy of the GNU General Public License
|
d@0
|
16 * along with this program; if not, write to the Free Software
|
d@0
|
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
d@0
|
18 *
|
d@0
|
19 */
|
d@0
|
20 /* Generated by: ../../genfft/gen_notw_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -with-ostride 2 -include fftw-spu.h -store-multiple 2 -n 14 -name X(spu_n2fv_14) */
|
d@0
|
21
|
d@0
|
22 /*
|
d@0
|
23 * This function contains 74 FP additions, 48 FP multiplications,
|
d@0
|
24 * (or, 32 additions, 6 multiplications, 42 fused multiply/add),
|
d@0
|
25 * 93 stack variables, 6 constants, and 35 memory accesses
|
d@0
|
26 */
|
d@0
|
27 #include "fftw-spu.h"
|
d@0
|
28
|
d@0
|
29 void X(spu_n2fv_14) (const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) {
|
d@0
|
30 DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
|
d@0
|
31 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
d@0
|
32 DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
|
d@0
|
33 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
d@0
|
34 DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
|
d@0
|
35 DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
|
d@0
|
36 INT i;
|
d@0
|
37 const R *xi;
|
d@0
|
38 R *xo;
|
d@0
|
39 xi = ri;
|
d@0
|
40 xo = ro;
|
d@0
|
41 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {
|
d@0
|
42 V TH, T3, Ta, Ts, TV, TN, TK, TW, Tt, To, Th, Tu, TU, TQ, Tp;
|
d@0
|
43 V TC, Tx, TR, T14, TZ, T1, T2, TI, T6, TJ, T9, TP, Tn, TO, Tk;
|
d@0
|
44 V TM, Tg, TL, Td, T4, T5, T7, T8, Tl, Tm, Ti, Tj, Te, Tf, Tb;
|
d@0
|
45 V Tc, T1a, T1b, T19, T1c, Tr, Tw, Tq, Tv, T16, T18, T15, T17, T1d, T1e;
|
d@0
|
46 V T1f, T1i, Tz, TB, Ty, TA, T1g, TT, TY, TS, TX, T1h, T1j, T11, T13;
|
d@0
|
47 V T10, T12, T1k, TE, TG, TD, TF, T1l, T1m;
|
d@0
|
48 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
d@0
|
49 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
50 TH = VADD(T1, T2);
|
d@0
|
51 T3 = VSUB(T1, T2);
|
d@0
|
52 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
d@0
|
53 T5 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
54 TI = VADD(T4, T5);
|
d@0
|
55 T6 = VSUB(T4, T5);
|
d@0
|
56 T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
|
d@0
|
57 T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
58 TJ = VADD(T7, T8);
|
d@0
|
59 T9 = VSUB(T7, T8);
|
d@0
|
60 Tl = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
d@0
|
61 Tm = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
62 TP = VADD(Tl, Tm);
|
d@0
|
63 Tn = VSUB(Tl, Tm);
|
d@0
|
64 Ti = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
d@0
|
65 Tj = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
66 TO = VADD(Ti, Tj);
|
d@0
|
67 Tk = VSUB(Ti, Tj);
|
d@0
|
68 Te = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
d@0
|
69 Tf = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
70 TM = VADD(Te, Tf);
|
d@0
|
71 Tg = VSUB(Te, Tf);
|
d@0
|
72 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
d@0
|
73 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
74 TL = VADD(Tb, Tc);
|
d@0
|
75 Td = VSUB(Tb, Tc);
|
d@0
|
76 Ta = VADD(T6, T9);
|
d@0
|
77 Ts = VSUB(T9, T6);
|
d@0
|
78 TV = VSUB(TL, TM);
|
d@0
|
79 TN = VADD(TL, TM);
|
d@0
|
80 TK = VADD(TI, TJ);
|
d@0
|
81 TW = VSUB(TJ, TI);
|
d@0
|
82 Tt = VSUB(Tn, Tk);
|
d@0
|
83 To = VADD(Tk, Tn);
|
d@0
|
84 Th = VADD(Td, Tg);
|
d@0
|
85 Tu = VSUB(Tg, Td);
|
d@0
|
86 TU = VSUB(TO, TP);
|
d@0
|
87 TQ = VADD(TO, TP);
|
d@0
|
88 Tp = VFNMS(LDK(KP356895867), Ta, To);
|
d@0
|
89 TC = VFNMS(LDK(KP356895867), To, Th);
|
d@0
|
90 Tx = VFNMS(LDK(KP356895867), Th, Ta);
|
d@0
|
91 TR = VFNMS(LDK(KP356895867), TQ, TN);
|
d@0
|
92 T14 = VFNMS(LDK(KP356895867), TN, TK);
|
d@0
|
93 TZ = VFNMS(LDK(KP356895867), TK, TQ);
|
d@0
|
94 T19 = VADD(T3, VADD(Ta, VADD(Th, To)));
|
d@0
|
95 STM2(&(xo[14]), T19, ovs, &(xo[2]));
|
d@0
|
96 T1a = VADD(TH, VADD(TK, VADD(TN, TQ)));
|
d@0
|
97 STM2(&(xo[0]), T1a, ovs, &(xo[0]));
|
d@0
|
98 Tq = VFNMS(LDK(KP692021471), Tp, Th);
|
d@0
|
99 Tr = VFNMS(LDK(KP900968867), Tq, T3);
|
d@0
|
100 Tv = VFMA(LDK(KP554958132), Tu, Tt);
|
d@0
|
101 Tw = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tv, Ts));
|
d@0
|
102 T1b = VFNMSI(Tw, Tr);
|
d@0
|
103 STM2(&(xo[10]), T1b, ovs, &(xo[2]));
|
d@0
|
104 T1c = VFMAI(Tw, Tr);
|
d@0
|
105 STM2(&(xo[18]), T1c, ovs, &(xo[2]));
|
d@0
|
106 T15 = VFNMS(LDK(KP692021471), T14, TQ);
|
d@0
|
107 T16 = VFNMS(LDK(KP900968867), T15, TH);
|
d@0
|
108 T17 = VFNMS(LDK(KP554958132), TU, TW);
|
d@0
|
109 T18 = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), T17, TV));
|
d@0
|
110 T1d = VFMAI(T18, T16);
|
d@0
|
111 STM2(&(xo[12]), T1d, ovs, &(xo[0]));
|
d@0
|
112 STN2(&(xo[12]), T1d, T19, ovs);
|
d@0
|
113 T1e = VFNMSI(T18, T16);
|
d@0
|
114 STM2(&(xo[16]), T1e, ovs, &(xo[0]));
|
d@0
|
115 STN2(&(xo[16]), T1e, T1c, ovs);
|
d@0
|
116 Ty = VFNMS(LDK(KP692021471), Tx, To);
|
d@0
|
117 Tz = VFNMS(LDK(KP900968867), Ty, T3);
|
d@0
|
118 TA = VFMA(LDK(KP554958132), Tt, Ts);
|
d@0
|
119 TB = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), TA, Tu));
|
d@0
|
120 T1f = VFNMSI(TB, Tz);
|
d@0
|
121 STM2(&(xo[26]), T1f, ovs, &(xo[2]));
|
d@0
|
122 T1g = VFMAI(TB, Tz);
|
d@0
|
123 STM2(&(xo[2]), T1g, ovs, &(xo[2]));
|
d@0
|
124 STN2(&(xo[0]), T1a, T1g, ovs);
|
d@0
|
125 TS = VFNMS(LDK(KP692021471), TR, TK);
|
d@0
|
126 TT = VFNMS(LDK(KP900968867), TS, TH);
|
d@0
|
127 TX = VFMA(LDK(KP554958132), TW, TV);
|
d@0
|
128 TY = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TX, TU));
|
d@0
|
129 T1h = VFMAI(TY, TT);
|
d@0
|
130 STM2(&(xo[8]), T1h, ovs, &(xo[0]));
|
d@0
|
131 STN2(&(xo[8]), T1h, T1b, ovs);
|
d@0
|
132 T1i = VFNMSI(TY, TT);
|
d@0
|
133 STM2(&(xo[20]), T1i, ovs, &(xo[0]));
|
d@0
|
134 T10 = VFNMS(LDK(KP692021471), TZ, TN);
|
d@0
|
135 T11 = VFNMS(LDK(KP900968867), T10, TH);
|
d@0
|
136 T12 = VFMA(LDK(KP554958132), TV, TU);
|
d@0
|
137 T13 = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), T12, TW));
|
d@0
|
138 T1j = VFMAI(T13, T11);
|
d@0
|
139 STM2(&(xo[4]), T1j, ovs, &(xo[0]));
|
d@0
|
140 T1k = VFNMSI(T13, T11);
|
d@0
|
141 STM2(&(xo[24]), T1k, ovs, &(xo[0]));
|
d@0
|
142 STN2(&(xo[24]), T1k, T1f, ovs);
|
d@0
|
143 TD = VFNMS(LDK(KP692021471), TC, Ta);
|
d@0
|
144 TE = VFNMS(LDK(KP900968867), TD, T3);
|
d@0
|
145 TF = VFNMS(LDK(KP554958132), Ts, Tu);
|
d@0
|
146 TG = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), TF, Tt));
|
d@0
|
147 T1l = VFNMSI(TG, TE);
|
d@0
|
148 STM2(&(xo[22]), T1l, ovs, &(xo[2]));
|
d@0
|
149 STN2(&(xo[20]), T1i, T1l, ovs);
|
d@0
|
150 T1m = VFMAI(TG, TE);
|
d@0
|
151 STM2(&(xo[6]), T1m, ovs, &(xo[2]));
|
d@0
|
152 STN2(&(xo[4]), T1j, T1m, ovs);
|
d@0
|
153 }
|
d@0
|
154 }
|