annotate Lib/fftw-3.2.1/cell/spu/spu_n2fv_12.spuc @ 0:25bf17994ef1

First commit. VS2013, Codeblocks and Mac OSX configuration
author Geogaddi\David <d.m.ronan@qmul.ac.uk>
date Thu, 09 Jul 2015 01:12:16 +0100
parents
children
rev   line source
d@0 1 /*
d@0 2 * Copyright (c) 2003, 2007-8 Matteo Frigo
d@0 3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
d@0 4 *
d@0 5 * This program is free software; you can redistribute it and/or modify
d@0 6 * it under the terms of the GNU General Public License as published by
d@0 7 * the Free Software Foundation; either version 2 of the License, or
d@0 8 * (at your option) any later version.
d@0 9 *
d@0 10 * This program is distributed in the hope that it will be useful,
d@0 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
d@0 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
d@0 13 * GNU General Public License for more details.
d@0 14 *
d@0 15 * You should have received a copy of the GNU General Public License
d@0 16 * along with this program; if not, write to the Free Software
d@0 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
d@0 18 *
d@0 19 */
d@0 20 /* Generated by: ../../genfft/gen_notw_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -with-ostride 2 -include fftw-spu.h -store-multiple 2 -n 12 -name X(spu_n2fv_12) */
d@0 21
d@0 22 /*
d@0 23 * This function contains 48 FP additions, 20 FP multiplications,
d@0 24 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
d@0 25 * 65 stack variables, 2 constants, and 30 memory accesses
d@0 26 */
d@0 27 #include "fftw-spu.h"
d@0 28
d@0 29 void X(spu_n2fv_12) (const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) {
d@0 30 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
d@0 31 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
d@0 32 INT i;
d@0 33 const R *xi;
d@0 34 R *xo;
d@0 35 xi = ri;
d@0 36 xo = ro;
d@0 37 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {
d@0 38 V TF, T5, Ta, TG, Tt, TB, TA, Ti, Tm, TI, Tp, TJ, T1, T6, Tr;
d@0 39 V T4, Ts, T9, T2, T3, T7, T8, Tk, Tn, Tl, Te, To, Th, Tc, Td;
d@0 40 V Tf, Tg, TN, TO, TP, TQ, TL, TM, TH, TK, Tx, Ty, TT, TU, Tj;
d@0 41 V Tv, Tw, Tu, Tb, Tq, TR, TS, TE, TC, TD, Tz, TV, TW, TX, TY;
d@0 42 T1 = LD(&(xi[0]), ivs, &(xi[0]));
d@0 43 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
d@0 44 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
d@0 45 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
d@0 46 Tr = VSUB(T3, T2);
d@0 47 T4 = VADD(T2, T3);
d@0 48 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
d@0 49 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
d@0 50 Ts = VSUB(T8, T7);
d@0 51 T9 = VADD(T7, T8);
d@0 52 TF = VADD(T1, T4);
d@0 53 T5 = VFNMS(LDK(KP500000000), T4, T1);
d@0 54 Ta = VFNMS(LDK(KP500000000), T9, T6);
d@0 55 TG = VADD(T6, T9);
d@0 56 Tt = VSUB(Tr, Ts);
d@0 57 TB = VADD(Tr, Ts);
d@0 58 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
d@0 59 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
d@0 60 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
d@0 61 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
d@0 62 Tl = VADD(Td, Tc);
d@0 63 Te = VSUB(Tc, Td);
d@0 64 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
d@0 65 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
d@0 66 To = VADD(Tf, Tg);
d@0 67 Th = VSUB(Tf, Tg);
d@0 68 TA = VSUB(Te, Th);
d@0 69 Ti = VADD(Te, Th);
d@0 70 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
d@0 71 TI = VADD(Tk, Tl);
d@0 72 Tp = VFNMS(LDK(KP500000000), To, Tn);
d@0 73 TJ = VADD(Tn, To);
d@0 74 TL = VADD(TF, TG);
d@0 75 TH = VSUB(TF, TG);
d@0 76 TK = VSUB(TI, TJ);
d@0 77 TM = VADD(TI, TJ);
d@0 78 TN = VFNMSI(TK, TH);
d@0 79 STM2(&(xo[18]), TN, ovs, &(xo[2]));
d@0 80 TO = VFMAI(TK, TH);
d@0 81 STM2(&(xo[6]), TO, ovs, &(xo[2]));
d@0 82 TP = VSUB(TL, TM);
d@0 83 STM2(&(xo[12]), TP, ovs, &(xo[0]));
d@0 84 TQ = VADD(TL, TM);
d@0 85 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
d@0 86 Tx = VADD(T5, Ta);
d@0 87 Tb = VSUB(T5, Ta);
d@0 88 Tj = VFMA(LDK(KP866025403), Ti, Tb);
d@0 89 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
d@0 90 Tq = VSUB(Tm, Tp);
d@0 91 Ty = VADD(Tm, Tp);
d@0 92 Tw = VFMA(LDK(KP866025403), Tt, Tq);
d@0 93 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
d@0 94 TR = VFNMSI(Tu, Tj);
d@0 95 STM2(&(xo[2]), TR, ovs, &(xo[2]));
d@0 96 STN2(&(xo[0]), TQ, TR, ovs);
d@0 97 TS = VFMAI(Tw, Tv);
d@0 98 STM2(&(xo[14]), TS, ovs, &(xo[2]));
d@0 99 STN2(&(xo[12]), TP, TS, ovs);
d@0 100 TT = VFMAI(Tu, Tj);
d@0 101 STM2(&(xo[22]), TT, ovs, &(xo[2]));
d@0 102 TU = VFNMSI(Tw, Tv);
d@0 103 STM2(&(xo[10]), TU, ovs, &(xo[2]));
d@0 104 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
d@0 105 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
d@0 106 TD = VADD(Tx, Ty);
d@0 107 Tz = VSUB(Tx, Ty);
d@0 108 TV = VFMAI(TC, Tz);
d@0 109 STM2(&(xo[4]), TV, ovs, &(xo[0]));
d@0 110 STN2(&(xo[4]), TV, TO, ovs);
d@0 111 TW = VFNMSI(TE, TD);
d@0 112 STM2(&(xo[16]), TW, ovs, &(xo[0]));
d@0 113 STN2(&(xo[16]), TW, TN, ovs);
d@0 114 TX = VFNMSI(TC, Tz);
d@0 115 STM2(&(xo[20]), TX, ovs, &(xo[0]));
d@0 116 STN2(&(xo[20]), TX, TT, ovs);
d@0 117 TY = VFMAI(TE, TD);
d@0 118 STM2(&(xo[8]), TY, ovs, &(xo[0]));
d@0 119 STN2(&(xo[8]), TY, TU, ovs);
d@0 120 }
d@0 121 }