d@0
|
1 /*
|
d@0
|
2 * Copyright (c) 2003, 2007-8 Matteo Frigo
|
d@0
|
3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
|
d@0
|
4 *
|
d@0
|
5 * This program is free software; you can redistribute it and/or modify
|
d@0
|
6 * it under the terms of the GNU General Public License as published by
|
d@0
|
7 * the Free Software Foundation; either version 2 of the License, or
|
d@0
|
8 * (at your option) any later version.
|
d@0
|
9 *
|
d@0
|
10 * This program is distributed in the hope that it will be useful,
|
d@0
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
d@0
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
d@0
|
13 * GNU General Public License for more details.
|
d@0
|
14 *
|
d@0
|
15 * You should have received a copy of the GNU General Public License
|
d@0
|
16 * along with this program; if not, write to the Free Software
|
d@0
|
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
d@0
|
18 *
|
d@0
|
19 */
|
d@0
|
20 /* Generated by: ../../genfft/gen_notw_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -with-ostride 2 -include fftw-spu.h -store-multiple 2 -n 12 -name X(spu_n2fv_12) */
|
d@0
|
21
|
d@0
|
22 /*
|
d@0
|
23 * This function contains 48 FP additions, 20 FP multiplications,
|
d@0
|
24 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
|
d@0
|
25 * 65 stack variables, 2 constants, and 30 memory accesses
|
d@0
|
26 */
|
d@0
|
27 #include "fftw-spu.h"
|
d@0
|
28
|
d@0
|
29 void X(spu_n2fv_12) (const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) {
|
d@0
|
30 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
d@0
|
31 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
d@0
|
32 INT i;
|
d@0
|
33 const R *xi;
|
d@0
|
34 R *xo;
|
d@0
|
35 xi = ri;
|
d@0
|
36 xo = ro;
|
d@0
|
37 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {
|
d@0
|
38 V TF, T5, Ta, TG, Tt, TB, TA, Ti, Tm, TI, Tp, TJ, T1, T6, Tr;
|
d@0
|
39 V T4, Ts, T9, T2, T3, T7, T8, Tk, Tn, Tl, Te, To, Th, Tc, Td;
|
d@0
|
40 V Tf, Tg, TN, TO, TP, TQ, TL, TM, TH, TK, Tx, Ty, TT, TU, Tj;
|
d@0
|
41 V Tv, Tw, Tu, Tb, Tq, TR, TS, TE, TC, TD, Tz, TV, TW, TX, TY;
|
d@0
|
42 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
d@0
|
43 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
d@0
|
44 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
d@0
|
45 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
d@0
|
46 Tr = VSUB(T3, T2);
|
d@0
|
47 T4 = VADD(T2, T3);
|
d@0
|
48 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
d@0
|
49 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
d@0
|
50 Ts = VSUB(T8, T7);
|
d@0
|
51 T9 = VADD(T7, T8);
|
d@0
|
52 TF = VADD(T1, T4);
|
d@0
|
53 T5 = VFNMS(LDK(KP500000000), T4, T1);
|
d@0
|
54 Ta = VFNMS(LDK(KP500000000), T9, T6);
|
d@0
|
55 TG = VADD(T6, T9);
|
d@0
|
56 Tt = VSUB(Tr, Ts);
|
d@0
|
57 TB = VADD(Tr, Ts);
|
d@0
|
58 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
59 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
60 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
61 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
62 Tl = VADD(Td, Tc);
|
d@0
|
63 Te = VSUB(Tc, Td);
|
d@0
|
64 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
65 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
66 To = VADD(Tf, Tg);
|
d@0
|
67 Th = VSUB(Tf, Tg);
|
d@0
|
68 TA = VSUB(Te, Th);
|
d@0
|
69 Ti = VADD(Te, Th);
|
d@0
|
70 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
|
d@0
|
71 TI = VADD(Tk, Tl);
|
d@0
|
72 Tp = VFNMS(LDK(KP500000000), To, Tn);
|
d@0
|
73 TJ = VADD(Tn, To);
|
d@0
|
74 TL = VADD(TF, TG);
|
d@0
|
75 TH = VSUB(TF, TG);
|
d@0
|
76 TK = VSUB(TI, TJ);
|
d@0
|
77 TM = VADD(TI, TJ);
|
d@0
|
78 TN = VFNMSI(TK, TH);
|
d@0
|
79 STM2(&(xo[18]), TN, ovs, &(xo[2]));
|
d@0
|
80 TO = VFMAI(TK, TH);
|
d@0
|
81 STM2(&(xo[6]), TO, ovs, &(xo[2]));
|
d@0
|
82 TP = VSUB(TL, TM);
|
d@0
|
83 STM2(&(xo[12]), TP, ovs, &(xo[0]));
|
d@0
|
84 TQ = VADD(TL, TM);
|
d@0
|
85 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
|
d@0
|
86 Tx = VADD(T5, Ta);
|
d@0
|
87 Tb = VSUB(T5, Ta);
|
d@0
|
88 Tj = VFMA(LDK(KP866025403), Ti, Tb);
|
d@0
|
89 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
|
d@0
|
90 Tq = VSUB(Tm, Tp);
|
d@0
|
91 Ty = VADD(Tm, Tp);
|
d@0
|
92 Tw = VFMA(LDK(KP866025403), Tt, Tq);
|
d@0
|
93 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
|
d@0
|
94 TR = VFNMSI(Tu, Tj);
|
d@0
|
95 STM2(&(xo[2]), TR, ovs, &(xo[2]));
|
d@0
|
96 STN2(&(xo[0]), TQ, TR, ovs);
|
d@0
|
97 TS = VFMAI(Tw, Tv);
|
d@0
|
98 STM2(&(xo[14]), TS, ovs, &(xo[2]));
|
d@0
|
99 STN2(&(xo[12]), TP, TS, ovs);
|
d@0
|
100 TT = VFMAI(Tu, Tj);
|
d@0
|
101 STM2(&(xo[22]), TT, ovs, &(xo[2]));
|
d@0
|
102 TU = VFNMSI(Tw, Tv);
|
d@0
|
103 STM2(&(xo[10]), TU, ovs, &(xo[2]));
|
d@0
|
104 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
|
d@0
|
105 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
|
d@0
|
106 TD = VADD(Tx, Ty);
|
d@0
|
107 Tz = VSUB(Tx, Ty);
|
d@0
|
108 TV = VFMAI(TC, Tz);
|
d@0
|
109 STM2(&(xo[4]), TV, ovs, &(xo[0]));
|
d@0
|
110 STN2(&(xo[4]), TV, TO, ovs);
|
d@0
|
111 TW = VFNMSI(TE, TD);
|
d@0
|
112 STM2(&(xo[16]), TW, ovs, &(xo[0]));
|
d@0
|
113 STN2(&(xo[16]), TW, TN, ovs);
|
d@0
|
114 TX = VFNMSI(TC, Tz);
|
d@0
|
115 STM2(&(xo[20]), TX, ovs, &(xo[0]));
|
d@0
|
116 STN2(&(xo[20]), TX, TT, ovs);
|
d@0
|
117 TY = VFMAI(TE, TD);
|
d@0
|
118 STM2(&(xo[8]), TY, ovs, &(xo[0]));
|
d@0
|
119 STN2(&(xo[8]), TY, TU, ovs);
|
d@0
|
120 }
|
d@0
|
121 }
|