d@0
|
1 /*
|
d@0
|
2 * Copyright (c) 2003, 2007-8 Matteo Frigo
|
d@0
|
3 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
|
d@0
|
4 *
|
d@0
|
5 * This program is free software; you can redistribute it and/or modify
|
d@0
|
6 * it under the terms of the GNU General Public License as published by
|
d@0
|
7 * the Free Software Foundation; either version 2 of the License, or
|
d@0
|
8 * (at your option) any later version.
|
d@0
|
9 *
|
d@0
|
10 * This program is distributed in the hope that it will be useful,
|
d@0
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
d@0
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
d@0
|
13 * GNU General Public License for more details.
|
d@0
|
14 *
|
d@0
|
15 * You should have received a copy of the GNU General Public License
|
d@0
|
16 * along with this program; if not, write to the Free Software
|
d@0
|
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
d@0
|
18 *
|
d@0
|
19 */
|
d@0
|
20 /* Generated by: ../../genfft/gen_notw_c -standalone -fma -reorder-insns -simd -compact -variables 100000 -with-ostride 2 -include fftw-spu.h -store-multiple 2 -n 10 -name X(spu_n2fv_10) */
|
d@0
|
21
|
d@0
|
22 /*
|
d@0
|
23 * This function contains 42 FP additions, 22 FP multiplications,
|
d@0
|
24 * (or, 24 additions, 4 multiplications, 18 fused multiply/add),
|
d@0
|
25 * 59 stack variables, 4 constants, and 25 memory accesses
|
d@0
|
26 */
|
d@0
|
27 #include "fftw-spu.h"
|
d@0
|
28
|
d@0
|
29 void X(spu_n2fv_10) (const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) {
|
d@0
|
30 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
d@0
|
31 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
d@0
|
32 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
d@0
|
33 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
d@0
|
34 INT i;
|
d@0
|
35 const R *xi;
|
d@0
|
36 R *xo;
|
d@0
|
37 xi = ri;
|
d@0
|
38 xo = ro;
|
d@0
|
39 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {
|
d@0
|
40 V Tr, T3, Tm, Tn, TD, TC, TA, Ty, Ti, Tk, T1, T2, Ts, T6, Tw;
|
d@0
|
41 V Tg, Tt, T9, Tv, Td, T4, T5, Te, Tf, T7, T8, Tb, Tc, Ta, Th;
|
d@0
|
42 V Tu, Tx, TH, TI, TK, TL, TM, Tq, To, Tp, Tl, Tj, TJ, TG, TE;
|
d@0
|
43 V TF, TB, Tz, TN, TO, TP, TQ;
|
d@0
|
44 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
d@0
|
45 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
46 Tr = VADD(T1, T2);
|
d@0
|
47 T3 = VSUB(T1, T2);
|
d@0
|
48 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
d@0
|
49 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
50 Ts = VADD(T4, T5);
|
d@0
|
51 T6 = VSUB(T4, T5);
|
d@0
|
52 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
d@0
|
53 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
54 Tw = VADD(Te, Tf);
|
d@0
|
55 Tg = VSUB(Te, Tf);
|
d@0
|
56 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
d@0
|
57 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
58 Tt = VADD(T7, T8);
|
d@0
|
59 T9 = VSUB(T7, T8);
|
d@0
|
60 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
d@0
|
61 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
d@0
|
62 Tv = VADD(Tb, Tc);
|
d@0
|
63 Td = VSUB(Tb, Tc);
|
d@0
|
64 Ta = VADD(T6, T9);
|
d@0
|
65 Tm = VSUB(T6, T9);
|
d@0
|
66 Tn = VSUB(Td, Tg);
|
d@0
|
67 Th = VADD(Td, Tg);
|
d@0
|
68 Tu = VADD(Ts, Tt);
|
d@0
|
69 TD = VSUB(Ts, Tt);
|
d@0
|
70 TC = VSUB(Tv, Tw);
|
d@0
|
71 Tx = VADD(Tv, Tw);
|
d@0
|
72 TA = VSUB(Tu, Tx);
|
d@0
|
73 Ty = VADD(Tu, Tx);
|
d@0
|
74 Ti = VADD(Ta, Th);
|
d@0
|
75 Tk = VSUB(Ta, Th);
|
d@0
|
76 TH = VADD(T3, Ti);
|
d@0
|
77 STM2(&(xo[10]), TH, ovs, &(xo[2]));
|
d@0
|
78 TI = VADD(Tr, Ty);
|
d@0
|
79 STM2(&(xo[0]), TI, ovs, &(xo[0]));
|
d@0
|
80 Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn));
|
d@0
|
81 To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm));
|
d@0
|
82 Tj = VFNMS(LDK(KP250000000), Ti, T3);
|
d@0
|
83 Tp = VFNMS(LDK(KP559016994), Tk, Tj);
|
d@0
|
84 Tl = VFMA(LDK(KP559016994), Tk, Tj);
|
d@0
|
85 TJ = VFNMSI(To, Tl);
|
d@0
|
86 STM2(&(xo[2]), TJ, ovs, &(xo[2]));
|
d@0
|
87 STN2(&(xo[0]), TI, TJ, ovs);
|
d@0
|
88 TK = VFMAI(Tq, Tp);
|
d@0
|
89 STM2(&(xo[14]), TK, ovs, &(xo[2]));
|
d@0
|
90 TL = VFMAI(To, Tl);
|
d@0
|
91 STM2(&(xo[18]), TL, ovs, &(xo[2]));
|
d@0
|
92 TM = VFNMSI(Tq, Tp);
|
d@0
|
93 STM2(&(xo[6]), TM, ovs, &(xo[2]));
|
d@0
|
94 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD));
|
d@0
|
95 TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC));
|
d@0
|
96 Tz = VFNMS(LDK(KP250000000), Ty, Tr);
|
d@0
|
97 TF = VFMA(LDK(KP559016994), TA, Tz);
|
d@0
|
98 TB = VFNMS(LDK(KP559016994), TA, Tz);
|
d@0
|
99 TN = VFMAI(TE, TB);
|
d@0
|
100 STM2(&(xo[4]), TN, ovs, &(xo[0]));
|
d@0
|
101 STN2(&(xo[4]), TN, TM, ovs);
|
d@0
|
102 TO = VFNMSI(TG, TF);
|
d@0
|
103 STM2(&(xo[12]), TO, ovs, &(xo[0]));
|
d@0
|
104 STN2(&(xo[12]), TO, TK, ovs);
|
d@0
|
105 TP = VFNMSI(TE, TB);
|
d@0
|
106 STM2(&(xo[16]), TP, ovs, &(xo[0]));
|
d@0
|
107 STN2(&(xo[16]), TP, TL, ovs);
|
d@0
|
108 TQ = VFMAI(TG, TF);
|
d@0
|
109 STM2(&(xo[8]), TQ, ovs, &(xo[0]));
|
d@0
|
110 STN2(&(xo[8]), TQ, TH, ovs);
|
d@0
|
111 }
|
d@0
|
112 }
|