annotate query.cpp @ 207:861e4bc95547 refactoring

Move some code around a little.
author mas01cr
date Wed, 28 Nov 2007 17:22:42 +0000
parents 3c7c8b84e4f3
children cb126d467344
rev   line source
mas01cr@204 1 #include "audioDB.h"
mas01cr@204 2
mas01cr@204 3 bool audioDB::powers_acceptable(double p1, double p2) {
mas01cr@204 4 if (use_absolute_threshold) {
mas01cr@204 5 if ((p1 < absolute_threshold) || (p2 < absolute_threshold)) {
mas01cr@204 6 return false;
mas01cr@204 7 }
mas01cr@204 8 }
mas01cr@204 9 if (use_relative_threshold) {
mas01cr@204 10 if (fabs(p1-p2) > fabs(relative_threshold)) {
mas01cr@204 11 return false;
mas01cr@204 12 }
mas01cr@204 13 }
mas01cr@204 14 return true;
mas01cr@204 15 }
mas01cr@204 16
mas01cr@206 17 void audioDB::query(const char* dbName, const char* inFile, adb__queryResponse *adbQueryResponse) {
mas01cr@206 18 switch(queryType) {
mas01cr@204 19 case O2_SEQUENCE_QUERY:
mas01cr@204 20 if(radius==0)
mas01cr@204 21 trackSequenceQueryNN(dbName, inFile, adbQueryResponse);
mas01cr@204 22 else
mas01cr@204 23 trackSequenceQueryRad(dbName, inFile, adbQueryResponse);
mas01cr@204 24 break;
mas01cr@204 25 default:
mas01cr@204 26 error("unrecognized queryType in query()");
mas01cr@204 27 }
mas01cr@204 28 }
mas01cr@204 29
mas01cr@206 30 // return ordinal position of key in keyTable
mas01cr@204 31 unsigned audioDB::getKeyPos(char* key){
mas01cr@204 32 for(unsigned k=0; k<dbH->numFiles; k++)
mas01cr@204 33 if(strncmp(fileTable + k*O2_FILETABLESIZE, key, strlen(key))==0)
mas01cr@204 34 return k;
mas01cr@204 35 error("Key not found",key);
mas01cr@204 36 return O2_ERR_KEYNOTFOUND;
mas01cr@204 37 }
mas01cr@204 38
mas01cr@204 39 // This is a common pattern in sequence queries: what we are doing is
mas01cr@204 40 // taking a window of length seqlen over a buffer of length length,
mas01cr@204 41 // and placing the sum of the elements in that window in the first
mas01cr@204 42 // element of the window: thus replacing all but the last seqlen
mas01cr@204 43 // elements in the buffer the corresponding windowed sum.
mas01cr@204 44 void audioDB::sequence_sum(double *buffer, int length, int seqlen) {
mas01cr@204 45 double tmp1, tmp2, *ps;
mas01cr@204 46 int j, w;
mas01cr@204 47
mas01cr@204 48 tmp1 = *buffer;
mas01cr@204 49 j = 1;
mas01cr@204 50 w = seqlen - 1;
mas01cr@204 51 while(w--) {
mas01cr@204 52 *buffer += buffer[j++];
mas01cr@204 53 }
mas01cr@204 54 ps = buffer + 1;
mas01cr@204 55 w = length - seqlen; // +1 - 1
mas01cr@204 56 while(w--) {
mas01cr@204 57 tmp2 = *ps;
mas01cr@204 58 *ps = *(ps - 1) - tmp1 + *(ps + seqlen - 1);
mas01cr@204 59 tmp1 = tmp2;
mas01cr@204 60 ps++;
mas01cr@204 61 }
mas01cr@204 62 }
mas01cr@204 63
mas01cr@204 64 void audioDB::sequence_sqrt(double *buffer, int length, int seqlen) {
mas01cr@204 65 int w = length - seqlen + 1;
mas01cr@204 66 while(w--) {
mas01cr@204 67 *buffer = sqrt(*buffer);
mas01cr@204 68 buffer++;
mas01cr@204 69 }
mas01cr@204 70 }
mas01cr@204 71
mas01cr@204 72 void audioDB::sequence_average(double *buffer, int length, int seqlen) {
mas01cr@204 73 int w = length - seqlen + 1;
mas01cr@204 74 while(w--) {
mas01cr@204 75 *buffer /= seqlen;
mas01cr@204 76 buffer++;
mas01cr@204 77 }
mas01cr@204 78 }
mas01cr@204 79
mas01cr@204 80 void audioDB::trackSequenceQueryNN(const char* dbName, const char* inFile, adb__queryResponse *adbQueryResponse){
mas01cr@204 81
mas01cr@204 82 initTables(dbName, inFile);
mas01cr@204 83
mas01cr@204 84 // For each input vector, find the closest pointNN matching output vectors and report
mas01cr@204 85 // we use stdout in this stub version
mas01cr@204 86 unsigned numVectors = (statbuf.st_size-sizeof(int))/(sizeof(double)*dbH->dim);
mas01cr@204 87 double* query = (double*)(indata+sizeof(int));
mas01cr@204 88 double* queryCopy = 0;
mas01cr@204 89
mas01cr@204 90 if(!(dbH->flags & O2_FLAG_L2NORM) )
mas01cr@204 91 error("Database must be L2 normed for sequence query","use -L2NORM");
mas01cr@204 92
mas01cr@204 93 if(numVectors<sequenceLength)
mas01cr@204 94 error("Query shorter than requested sequence length", "maybe use -l");
mas01cr@204 95
mas01cr@204 96 if(verbosity>1) {
mas01cr@204 97 std::cerr << "performing norms ... "; std::cerr.flush();
mas01cr@204 98 }
mas01cr@204 99 unsigned dbVectors = dbH->length/(sizeof(double)*dbH->dim);
mas01cr@204 100
mas01cr@204 101 // Make a copy of the query
mas01cr@204 102 queryCopy = new double[numVectors*dbH->dim];
mas01cr@204 103 memcpy(queryCopy, query, numVectors*dbH->dim*sizeof(double));
mas01cr@204 104 qNorm = new double[numVectors];
mas01cr@204 105 sNorm = new double[dbVectors];
mas01cr@204 106 assert(qNorm&&sNorm&&queryCopy&&sequenceLength);
mas01cr@204 107 unitNorm(queryCopy, dbH->dim, numVectors, qNorm);
mas01cr@204 108 query = queryCopy;
mas01cr@204 109
mas01cr@204 110 // Make norm measurements relative to sequenceLength
mas01cr@204 111 unsigned w = sequenceLength-1;
mas01cr@204 112 unsigned i,j;
mas01cr@204 113
mas01cr@204 114 // Copy the L2 norm values to core to avoid disk random access later on
mas01cr@204 115 memcpy(sNorm, l2normTable, dbVectors*sizeof(double));
mas01cr@204 116 double* qnPtr = qNorm;
mas01cr@204 117 double* snPtr = sNorm;
mas01cr@204 118
mas01cr@204 119 double *sPower = 0, *qPower = 0;
mas01cr@204 120 double *spPtr = 0, *qpPtr = 0;
mas01cr@204 121
mas01cr@204 122 if (usingPower) {
mas01cr@204 123 if (!(dbH->flags & O2_FLAG_POWER)) {
mas01cr@204 124 error("database not power-enabled", dbName);
mas01cr@204 125 }
mas01cr@204 126 sPower = new double[dbVectors];
mas01cr@204 127 spPtr = sPower;
mas01cr@204 128 memcpy(sPower, powerTable, dbVectors * sizeof(double));
mas01cr@204 129 }
mas01cr@204 130
mas01cr@204 131 for(i=0; i<dbH->numFiles; i++){
mas01cr@204 132 if(trackTable[i]>=sequenceLength) {
mas01cr@204 133 sequence_sum(snPtr, trackTable[i], sequenceLength);
mas01cr@204 134 sequence_sqrt(snPtr, trackTable[i], sequenceLength);
mas01cr@204 135
mas01cr@204 136 if (usingPower) {
mas01cr@204 137 sequence_sum(spPtr, trackTable[i], sequenceLength);
mas01cr@204 138 sequence_average(spPtr, trackTable[i], sequenceLength);
mas01cr@204 139 }
mas01cr@204 140 }
mas01cr@204 141 snPtr += trackTable[i];
mas01cr@204 142 if (usingPower) {
mas01cr@204 143 spPtr += trackTable[i];
mas01cr@204 144 }
mas01cr@204 145 }
mas01cr@204 146
mas01cr@204 147 sequence_sum(qnPtr, numVectors, sequenceLength);
mas01cr@204 148 sequence_sqrt(qnPtr, numVectors, sequenceLength);
mas01cr@204 149
mas01cr@204 150 if (usingPower) {
mas01cr@204 151 qPower = new double[numVectors];
mas01cr@204 152 qpPtr = qPower;
mas01cr@204 153 if (lseek(powerfd, sizeof(int), SEEK_SET) == (off_t) -1) {
mas01cr@204 154 error("error seeking to data", powerFileName, "lseek");
mas01cr@204 155 }
mas01cr@204 156 int count = read(powerfd, qPower, numVectors * sizeof(double));
mas01cr@204 157 if (count == -1) {
mas01cr@204 158 error("error reading data", powerFileName, "read");
mas01cr@204 159 }
mas01cr@204 160 if ((unsigned) count != numVectors * sizeof(double)) {
mas01cr@204 161 error("short read", powerFileName);
mas01cr@204 162 }
mas01cr@204 163
mas01cr@204 164 sequence_sum(qpPtr, numVectors, sequenceLength);
mas01cr@204 165 sequence_average(qpPtr, numVectors, sequenceLength);
mas01cr@204 166 }
mas01cr@204 167
mas01cr@204 168 if(verbosity>1) {
mas01cr@204 169 std::cerr << "done." << std::endl;
mas01cr@204 170 }
mas01cr@204 171
mas01cr@204 172 if(verbosity>1) {
mas01cr@204 173 std::cerr << "matching tracks..." << std::endl;
mas01cr@204 174 }
mas01cr@204 175
mas01cr@204 176 assert(pointNN>0 && pointNN<=O2_MAXNN);
mas01cr@204 177 assert(trackNN>0 && trackNN<=O2_MAXNN);
mas01cr@204 178
mas01cr@204 179 // Make temporary dynamic memory for results
mas01cr@204 180 double trackDistances[trackNN];
mas01cr@204 181 unsigned trackIDs[trackNN];
mas01cr@204 182 unsigned trackQIndexes[trackNN];
mas01cr@204 183 unsigned trackSIndexes[trackNN];
mas01cr@204 184
mas01cr@204 185 double distances[pointNN];
mas01cr@204 186 unsigned qIndexes[pointNN];
mas01cr@204 187 unsigned sIndexes[pointNN];
mas01cr@204 188
mas01cr@204 189
mas01cr@204 190 unsigned k,l,m,n,track,trackOffset=0, HOP_SIZE=sequenceHop, wL=sequenceLength;
mas01cr@204 191 double thisDist;
mas01cr@204 192
mas01cr@204 193 for(k=0; k<pointNN; k++){
mas01cr@204 194 distances[k]=1.0e6;
mas01cr@204 195 qIndexes[k]=~0;
mas01cr@204 196 sIndexes[k]=~0;
mas01cr@204 197 }
mas01cr@204 198
mas01cr@204 199 for(k=0; k<trackNN; k++){
mas01cr@204 200 trackDistances[k]=1.0e6;
mas01cr@204 201 trackQIndexes[k]=~0;
mas01cr@204 202 trackSIndexes[k]=~0;
mas01cr@204 203 trackIDs[k]=~0;
mas01cr@204 204 }
mas01cr@204 205
mas01cr@204 206 // Timestamp and durations processing
mas01cr@204 207 double meanQdur = 0;
mas01cr@204 208 double *timesdata = 0;
mas01cr@204 209 double *querydurs = 0;
mas01cr@204 210 double *meanDBdur = 0;
mas01cr@204 211
mas01cr@204 212 if(usingTimes && !(dbH->flags & O2_FLAG_TIMES)){
mas01cr@204 213 std::cerr << "warning: ignoring query timestamps for non-timestamped database" << std::endl;
mas01cr@204 214 usingTimes=0;
mas01cr@204 215 }
mas01cr@204 216
mas01cr@204 217 else if(!usingTimes && (dbH->flags & O2_FLAG_TIMES))
mas01cr@204 218 std::cerr << "warning: no timestamps given for query. Ignoring database timestamps." << std::endl;
mas01cr@204 219
mas01cr@204 220 else if(usingTimes && (dbH->flags & O2_FLAG_TIMES)){
mas01cr@204 221 timesdata = new double[2*numVectors];
mas01cr@204 222 querydurs = new double[numVectors];
mas01cr@204 223
mas01cr@204 224 insertTimeStamps(numVectors, timesFile, timesdata);
mas01cr@204 225 // Calculate durations of points
mas01cr@204 226 for(k=0; k<numVectors-1; k++) {
mas01cr@204 227 querydurs[k] = timesdata[2*k+1] - timesdata[2*k];
mas01cr@204 228 meanQdur += querydurs[k];
mas01cr@204 229 }
mas01cr@204 230 meanQdur/=k;
mas01cr@204 231 if(verbosity>1) {
mas01cr@204 232 std::cerr << "mean query file duration: " << meanQdur << std::endl;
mas01cr@204 233 }
mas01cr@204 234 meanDBdur = new double[dbH->numFiles];
mas01cr@204 235 assert(meanDBdur);
mas01cr@204 236 for(k=0; k<dbH->numFiles; k++){
mas01cr@204 237 meanDBdur[k]=0.0;
mas01cr@204 238 for(j=0; j<trackTable[k]-1 ; j++) {
mas01cr@204 239 meanDBdur[k]+=timesTable[2*j+1]-timesTable[2*j];
mas01cr@204 240 }
mas01cr@204 241 meanDBdur[k]/=j;
mas01cr@204 242 }
mas01cr@204 243 }
mas01cr@204 244
mas01cr@204 245 if(usingQueryPoint)
mas01cr@204 246 if(queryPoint>numVectors || queryPoint>numVectors-wL+1)
mas01cr@204 247 error("queryPoint > numVectors-wL+1 in query");
mas01cr@204 248 else{
mas01cr@204 249 if(verbosity>1) {
mas01cr@204 250 std::cerr << "query point: " << queryPoint << std::endl; std::cerr.flush();
mas01cr@204 251 }
mas01cr@204 252 query = query + queryPoint * dbH->dim;
mas01cr@204 253 qnPtr = qnPtr + queryPoint;
mas01cr@204 254 if (usingPower) {
mas01cr@204 255 qpPtr = qpPtr + queryPoint;
mas01cr@204 256 }
mas01cr@204 257 numVectors=wL;
mas01cr@204 258 }
mas01cr@204 259
mas01cr@204 260 double ** D = 0; // Differences query and target
mas01cr@204 261 double ** DD = 0; // Matched filter distance
mas01cr@204 262
mas01cr@204 263 D = new double*[numVectors];
mas01cr@204 264 assert(D);
mas01cr@204 265 DD = new double*[numVectors];
mas01cr@204 266 assert(DD);
mas01cr@204 267
mas01cr@204 268 gettimeofday(&tv1, NULL);
mas01cr@204 269 unsigned processedTracks = 0;
mas01cr@204 270 unsigned successfulTracks=0;
mas01cr@204 271
mas01cr@204 272 double* qp;
mas01cr@204 273 double* sp;
mas01cr@204 274 double* dp;
mas01cr@204 275
mas01cr@204 276 // build track offset table
mas01cr@204 277 off_t *trackOffsetTable = new off_t[dbH->numFiles];
mas01cr@204 278 unsigned cumTrack=0;
mas01cr@204 279 off_t trackIndexOffset;
mas01cr@204 280 for(k=0; k<dbH->numFiles;k++){
mas01cr@204 281 trackOffsetTable[k]=cumTrack;
mas01cr@204 282 cumTrack+=trackTable[k]*dbH->dim;
mas01cr@204 283 }
mas01cr@204 284
mas01cr@204 285 char nextKey [MAXSTR];
mas01cr@204 286
mas01cr@204 287 // chi^2 statistics
mas01cr@204 288 double sampleCount = 0;
mas01cr@204 289 double sampleSum = 0;
mas01cr@204 290 double logSampleSum = 0;
mas01cr@204 291 double minSample = 1e9;
mas01cr@204 292 double maxSample = 0;
mas01cr@204 293
mas01cr@204 294 // Track loop
mas01cr@204 295 size_t data_buffer_size = 0;
mas01cr@204 296 double *data_buffer = 0;
mas01cr@204 297 lseek(dbfid, dbH->dataOffset, SEEK_SET);
mas01cr@204 298
mas01cr@204 299 for(processedTracks=0, track=0 ; processedTracks < dbH->numFiles ; track++, processedTracks++) {
mas01cr@204 300
mas01cr@204 301 trackOffset = trackOffsetTable[track]; // numDoubles offset
mas01cr@204 302
mas01cr@204 303 // get trackID from file if using a control file
mas01cr@204 304 if(trackFile) {
mas01cr@204 305 trackFile->getline(nextKey,MAXSTR);
mas01cr@204 306 if(!trackFile->eof()) {
mas01cr@204 307 track = getKeyPos(nextKey);
mas01cr@204 308 trackOffset = trackOffsetTable[track];
mas01cr@204 309 lseek(dbfid, dbH->dataOffset + trackOffset * sizeof(double), SEEK_SET);
mas01cr@204 310 } else {
mas01cr@204 311 break;
mas01cr@204 312 }
mas01cr@204 313 }
mas01cr@204 314
mas01cr@204 315 trackIndexOffset=trackOffset/dbH->dim; // numVectors offset
mas01cr@204 316
mas01cr@204 317 if(sequenceLength<=trackTable[track]){ // test for short sequences
mas01cr@204 318
mas01cr@204 319 if(verbosity>7) {
mas01cr@204 320 std::cerr << track << "." << trackIndexOffset << "." << trackTable[track] << " | ";std::cerr.flush();
mas01cr@204 321 }
mas01cr@204 322
mas01cr@204 323 if (trackTable[track] * sizeof(double) * dbH->dim > data_buffer_size) {
mas01cr@204 324 if(data_buffer) {
mas01cr@204 325 free(data_buffer);
mas01cr@204 326 }
mas01cr@204 327 {
mas01cr@204 328 data_buffer_size = trackTable[track] * sizeof(double) * dbH->dim;
mas01cr@204 329 void *tmp = malloc(data_buffer_size);
mas01cr@204 330 if (tmp == NULL) {
mas01cr@204 331 error("error allocating data buffer");
mas01cr@204 332 }
mas01cr@204 333 data_buffer = (double *) tmp;
mas01cr@204 334 }
mas01cr@204 335 }
mas01cr@204 336
mas01cr@204 337 read(dbfid, data_buffer, trackTable[track] * sizeof(double) * dbH->dim);
mas01cr@204 338
mas01cr@207 339 // Sum products matrix
mas01cr@207 340 for(j=0; j<numVectors;j++){
mas01cr@207 341 D[j]=new double[trackTable[track]];
mas01cr@207 342 assert(D[j]);
mas01cr@207 343
mas01cr@207 344 }
mas01cr@207 345
mas01cr@207 346 // Matched filter matrix
mas01cr@207 347 for(j=0; j<numVectors;j++){
mas01cr@207 348 DD[j]=new double[trackTable[track]];
mas01cr@207 349 assert(DD[j]);
mas01cr@207 350 }
mas01cr@207 351
mas01cr@204 352 // Dot product
mas01cr@204 353 for(j=0; j<numVectors; j++)
mas01cr@204 354 for(k=0; k<trackTable[track]; k++){
mas01cr@204 355 qp=query+j*dbH->dim;
mas01cr@204 356 sp=data_buffer+k*dbH->dim;
mas01cr@204 357 DD[j][k]=0.0; // Initialize matched filter array
mas01cr@204 358 dp=&D[j][k]; // point to correlation cell j,k
mas01cr@204 359 *dp=0.0; // initialize correlation cell
mas01cr@204 360 l=dbH->dim; // size of vectors
mas01cr@204 361 while(l--)
mas01cr@204 362 *dp+=*qp++**sp++;
mas01cr@204 363 }
mas01cr@204 364
mas01cr@204 365 // Matched Filter
mas01cr@204 366 // HOP SIZE == 1
mas01cr@204 367 double* spd;
mas01cr@204 368 if(HOP_SIZE==1){ // HOP_SIZE = shingleHop
mas01cr@204 369 for(w=0; w<wL; w++)
mas01cr@204 370 for(j=0; j<numVectors-w; j++){
mas01cr@204 371 sp=DD[j];
mas01cr@204 372 spd=D[j+w]+w;
mas01cr@204 373 k=trackTable[track]-w;
mas01cr@204 374 while(k--)
mas01cr@204 375 *sp+++=*spd++;
mas01cr@204 376 }
mas01cr@204 377 }
mas01cr@204 378
mas01cr@204 379 else{ // HOP_SIZE != 1
mas01cr@204 380 for(w=0; w<wL; w++)
mas01cr@204 381 for(j=0; j<numVectors-w; j+=HOP_SIZE){
mas01cr@204 382 sp=DD[j];
mas01cr@204 383 spd=D[j+w]+w;
mas01cr@204 384 for(k=0; k<trackTable[track]-w; k+=HOP_SIZE){
mas01cr@204 385 *sp+=*spd;
mas01cr@204 386 sp+=HOP_SIZE;
mas01cr@204 387 spd+=HOP_SIZE;
mas01cr@204 388 }
mas01cr@204 389 }
mas01cr@204 390 }
mas01cr@204 391
mas01cr@204 392 if(verbosity>3 && usingTimes) {
mas01cr@204 393 std::cerr << "meanQdur=" << meanQdur << " meanDBdur=" << meanDBdur[track] << std::endl;
mas01cr@204 394 std::cerr.flush();
mas01cr@204 395 }
mas01cr@204 396
mas01cr@204 397 if(!usingTimes ||
mas01cr@204 398 (usingTimes
mas01cr@204 399 && fabs(meanDBdur[track]-meanQdur)<meanQdur*timesTol)){
mas01cr@204 400
mas01cr@204 401 if(verbosity>3 && usingTimes) {
mas01cr@204 402 std::cerr << "within duration tolerance." << std::endl;
mas01cr@204 403 std::cerr.flush();
mas01cr@204 404 }
mas01cr@204 405
mas01cr@204 406 // Search for minimum distance by shingles (concatenated vectors)
mas01cr@204 407 for(j=0;j<=numVectors-wL;j+=HOP_SIZE)
mas01cr@204 408 for(k=0;k<=trackTable[track]-wL;k+=HOP_SIZE){
mas01cr@204 409 thisDist=2-(2/(qnPtr[j]*sNorm[trackIndexOffset+k]))*DD[j][k];
mas01cr@204 410 if(verbosity>9) {
mas01cr@204 411 std::cerr << thisDist << " " << qnPtr[j] << " " << sNorm[trackIndexOffset+k] << std::endl;
mas01cr@204 412 }
mas01cr@204 413 // Gather chi^2 statistics
mas01cr@204 414 if(thisDist<minSample)
mas01cr@204 415 minSample=thisDist;
mas01cr@204 416 else if(thisDist>maxSample)
mas01cr@204 417 maxSample=thisDist;
mas01cr@204 418 if(thisDist>1e-9){
mas01cr@204 419 sampleCount++;
mas01cr@204 420 sampleSum+=thisDist;
mas01cr@204 421 logSampleSum+=log(thisDist);
mas01cr@204 422 }
mas01cr@204 423
mas01cr@204 424 // diffL2 = fabs(qnPtr[j] - sNorm[trackIndexOffset+k]);
mas01cr@204 425 // Power test
mas01cr@204 426 if (usingPower) {
mas01cr@204 427 if (!(powers_acceptable(qpPtr[j], sPower[trackIndexOffset + k]))) {
mas01cr@204 428 thisDist = 1000000.0;
mas01cr@204 429 }
mas01cr@204 430 }
mas01cr@204 431
mas01cr@204 432 // k-NN match algorithm
mas01cr@204 433 m=pointNN;
mas01cr@204 434 while(m--){
mas01cr@204 435 if(thisDist<=distances[m])
mas01cr@204 436 if(m==0 || thisDist>=distances[m-1]){
mas01cr@204 437 // Shuffle distances up the list
mas01cr@204 438 for(l=pointNN-1; l>m; l--){
mas01cr@204 439 distances[l]=distances[l-1];
mas01cr@204 440 qIndexes[l]=qIndexes[l-1];
mas01cr@204 441 sIndexes[l]=sIndexes[l-1];
mas01cr@204 442 }
mas01cr@204 443 distances[m]=thisDist;
mas01cr@204 444 if(usingQueryPoint)
mas01cr@204 445 qIndexes[m]=queryPoint;
mas01cr@204 446 else
mas01cr@204 447 qIndexes[m]=j;
mas01cr@204 448 sIndexes[m]=k;
mas01cr@204 449 break;
mas01cr@204 450 }
mas01cr@204 451 }
mas01cr@204 452 }
mas01cr@204 453 // Calculate the mean of the N-Best matches
mas01cr@204 454 thisDist=0.0;
mas01cr@204 455 for(m=0; m<pointNN; m++) {
mas01cr@204 456 if (distances[m] == 1000000.0) break;
mas01cr@204 457 thisDist+=distances[m];
mas01cr@204 458 }
mas01cr@204 459 thisDist/=m;
mas01cr@204 460
mas01cr@204 461 // Let's see the distances then...
mas01cr@204 462 if(verbosity>3) {
mas01cr@204 463 std::cerr << fileTable+track*O2_FILETABLESIZE << " " << thisDist << std::endl;
mas01cr@204 464 }
mas01cr@204 465
mas01cr@204 466
mas01cr@204 467 // All the track stuff goes here
mas01cr@204 468 n=trackNN;
mas01cr@204 469 while(n--){
mas01cr@204 470 if(thisDist<=trackDistances[n]){
mas01cr@204 471 if((n==0 || thisDist>=trackDistances[n-1])){
mas01cr@204 472 // Copy all values above up the queue
mas01cr@204 473 for( l=trackNN-1 ; l > n ; l--){
mas01cr@204 474 trackDistances[l]=trackDistances[l-1];
mas01cr@204 475 trackQIndexes[l]=trackQIndexes[l-1];
mas01cr@204 476 trackSIndexes[l]=trackSIndexes[l-1];
mas01cr@204 477 trackIDs[l]=trackIDs[l-1];
mas01cr@204 478 }
mas01cr@204 479 trackDistances[n]=thisDist;
mas01cr@204 480 trackQIndexes[n]=qIndexes[0];
mas01cr@204 481 trackSIndexes[n]=sIndexes[0];
mas01cr@204 482 successfulTracks++;
mas01cr@204 483 trackIDs[n]=track;
mas01cr@204 484 break;
mas01cr@204 485 }
mas01cr@204 486 }
mas01cr@204 487 else
mas01cr@204 488 break;
mas01cr@204 489 }
mas01cr@204 490 } // Duration match
mas01cr@204 491
mas01cr@204 492 // Clean up current track
mas01cr@204 493 if(D!=NULL){
mas01cr@204 494 for(j=0; j<numVectors; j++)
mas01cr@204 495 delete[] D[j];
mas01cr@204 496 }
mas01cr@204 497
mas01cr@204 498 if(DD!=NULL){
mas01cr@204 499 for(j=0; j<numVectors; j++)
mas01cr@204 500 delete[] DD[j];
mas01cr@204 501 }
mas01cr@204 502 }
mas01cr@204 503 // per-track reset array values
mas01cr@204 504 for(unsigned k=0; k<pointNN; k++){
mas01cr@204 505 distances[k]=1.0e6;
mas01cr@204 506 qIndexes[k]=~0;
mas01cr@204 507 sIndexes[k]=~0;
mas01cr@204 508 }
mas01cr@204 509 }
mas01cr@204 510
mas01cr@204 511 free(data_buffer);
mas01cr@204 512
mas01cr@204 513 gettimeofday(&tv2,NULL);
mas01cr@204 514 if(verbosity>1) {
mas01cr@204 515 std::cerr << std::endl << "processed tracks :" << processedTracks << " matched tracks: " << successfulTracks << " elapsed time:"
mas01cr@204 516 << ( tv2.tv_sec*1000 + tv2.tv_usec/1000 ) - ( tv1.tv_sec*1000+tv1.tv_usec/1000 ) << " msec" << std::endl;
mas01cr@204 517 std::cerr << "sampleCount: " << sampleCount << " sampleSum: " << sampleSum << " logSampleSum: " << logSampleSum
mas01cr@204 518 << " minSample: " << minSample << " maxSample: " << maxSample << std::endl;
mas01cr@204 519 }
mas01cr@204 520 if(adbQueryResponse==0){
mas01cr@204 521 if(verbosity>1) {
mas01cr@204 522 std::cerr<<std::endl;
mas01cr@204 523 }
mas01cr@204 524 // Output answer
mas01cr@204 525 // Loop over nearest neighbours
mas01cr@204 526 for(k=0; k < std::min(trackNN,successfulTracks); k++)
mas01cr@204 527 std::cout << fileTable+trackIDs[k]*O2_FILETABLESIZE << " " << trackDistances[k] << " "
mas01cr@204 528 << trackQIndexes[k] << " " << trackSIndexes[k] << std::endl;
mas01cr@204 529 }
mas01cr@204 530 else{ // Process Web Services Query
mas01cr@204 531 int listLen = std::min(trackNN, processedTracks);
mas01cr@204 532 adbQueryResponse->result.__sizeRlist=listLen;
mas01cr@204 533 adbQueryResponse->result.__sizeDist=listLen;
mas01cr@204 534 adbQueryResponse->result.__sizeQpos=listLen;
mas01cr@204 535 adbQueryResponse->result.__sizeSpos=listLen;
mas01cr@204 536 adbQueryResponse->result.Rlist= new char*[listLen];
mas01cr@204 537 adbQueryResponse->result.Dist = new double[listLen];
mas01cr@204 538 adbQueryResponse->result.Qpos = new unsigned int[listLen];
mas01cr@204 539 adbQueryResponse->result.Spos = new unsigned int[listLen];
mas01cr@204 540 for(k=0; k<(unsigned)adbQueryResponse->result.__sizeRlist; k++){
mas01cr@204 541 adbQueryResponse->result.Rlist[k]=new char[O2_MAXFILESTR];
mas01cr@204 542 adbQueryResponse->result.Dist[k]=trackDistances[k];
mas01cr@204 543 adbQueryResponse->result.Qpos[k]=trackQIndexes[k];
mas01cr@204 544 adbQueryResponse->result.Spos[k]=trackSIndexes[k];
mas01cr@204 545 sprintf(adbQueryResponse->result.Rlist[k], "%s", fileTable+trackIDs[k]*O2_FILETABLESIZE);
mas01cr@204 546 }
mas01cr@204 547 }
mas01cr@204 548
mas01cr@204 549 // Clean up
mas01cr@204 550 if(trackOffsetTable)
mas01cr@204 551 delete[] trackOffsetTable;
mas01cr@204 552 if(queryCopy)
mas01cr@204 553 delete[] queryCopy;
mas01cr@204 554 if(qNorm)
mas01cr@204 555 delete[] qNorm;
mas01cr@204 556 if(sNorm)
mas01cr@204 557 delete[] sNorm;
mas01cr@204 558 if(qPower)
mas01cr@204 559 delete[] qPower;
mas01cr@204 560 if(sPower)
mas01cr@204 561 delete[] sPower;
mas01cr@204 562 if(D)
mas01cr@204 563 delete[] D;
mas01cr@204 564 if(DD)
mas01cr@204 565 delete[] DD;
mas01cr@204 566 if(timesdata)
mas01cr@204 567 delete[] timesdata;
mas01cr@204 568 if(querydurs)
mas01cr@204 569 delete[] querydurs;
mas01cr@204 570 if(meanDBdur)
mas01cr@204 571 delete[] meanDBdur;
mas01cr@204 572 }
mas01cr@204 573
mas01cr@204 574 void audioDB::trackSequenceQueryRad(const char* dbName, const char* inFile, adb__queryResponse *adbQueryResponse){
mas01cr@204 575
mas01cr@204 576 initTables(dbName, inFile);
mas01cr@204 577
mas01cr@204 578 // For each input vector, find the closest pointNN matching output vectors and report
mas01cr@204 579 // we use stdout in this stub version
mas01cr@204 580 unsigned numVectors = (statbuf.st_size-sizeof(int))/(sizeof(double)*dbH->dim);
mas01cr@204 581 double* query = (double*)(indata+sizeof(int));
mas01cr@204 582 double* queryCopy = 0;
mas01cr@204 583
mas01cr@204 584 if(!(dbH->flags & O2_FLAG_L2NORM) )
mas01cr@204 585 error("Database must be L2 normed for sequence query","use -l2norm");
mas01cr@204 586
mas01cr@204 587 if(verbosity>1) {
mas01cr@204 588 std::cerr << "performing norms ... "; std::cerr.flush();
mas01cr@204 589 }
mas01cr@204 590 unsigned dbVectors = dbH->length/(sizeof(double)*dbH->dim);
mas01cr@204 591
mas01cr@204 592 // Make a copy of the query
mas01cr@204 593 queryCopy = new double[numVectors*dbH->dim];
mas01cr@204 594 memcpy(queryCopy, query, numVectors*dbH->dim*sizeof(double));
mas01cr@204 595 qNorm = new double[numVectors];
mas01cr@204 596 sNorm = new double[dbVectors];
mas01cr@204 597 assert(qNorm&&sNorm&&queryCopy&&sequenceLength);
mas01cr@204 598 unitNorm(queryCopy, dbH->dim, numVectors, qNorm);
mas01cr@204 599 query = queryCopy;
mas01cr@204 600
mas01cr@204 601 // Make norm measurements relative to sequenceLength
mas01cr@204 602 unsigned w = sequenceLength-1;
mas01cr@204 603 unsigned i,j;
mas01cr@204 604
mas01cr@204 605 // Copy the L2 norm values to core to avoid disk random access later on
mas01cr@204 606 memcpy(sNorm, l2normTable, dbVectors*sizeof(double));
mas01cr@204 607 double* snPtr = sNorm;
mas01cr@204 608 double* qnPtr = qNorm;
mas01cr@204 609
mas01cr@204 610 double *sPower = 0, *qPower = 0;
mas01cr@204 611 double *spPtr = 0, *qpPtr = 0;
mas01cr@204 612
mas01cr@204 613 if (usingPower) {
mas01cr@204 614 if(!(dbH->flags & O2_FLAG_POWER)) {
mas01cr@204 615 error("database not power-enabled", dbName);
mas01cr@204 616 }
mas01cr@204 617 sPower = new double[dbVectors];
mas01cr@204 618 spPtr = sPower;
mas01cr@204 619 memcpy(sPower, powerTable, dbVectors * sizeof(double));
mas01cr@204 620 }
mas01cr@204 621
mas01cr@204 622 for(i=0; i<dbH->numFiles; i++){
mas01cr@204 623 if(trackTable[i]>=sequenceLength) {
mas01cr@204 624 sequence_sum(snPtr, trackTable[i], sequenceLength);
mas01cr@204 625 sequence_sqrt(snPtr, trackTable[i], sequenceLength);
mas01cr@204 626 if (usingPower) {
mas01cr@204 627 sequence_sum(spPtr, trackTable[i], sequenceLength);
mas01cr@204 628 sequence_average(spPtr, trackTable[i], sequenceLength);
mas01cr@204 629 }
mas01cr@204 630 }
mas01cr@204 631 snPtr += trackTable[i];
mas01cr@204 632 if (usingPower) {
mas01cr@204 633 spPtr += trackTable[i];
mas01cr@204 634 }
mas01cr@204 635 }
mas01cr@204 636
mas01cr@204 637 sequence_sum(qnPtr, numVectors, sequenceLength);
mas01cr@204 638 sequence_sqrt(qnPtr, numVectors, sequenceLength);
mas01cr@204 639
mas01cr@204 640 if (usingPower) {
mas01cr@204 641 qPower = new double[numVectors];
mas01cr@204 642 qpPtr = qPower;
mas01cr@204 643 if (lseek(powerfd, sizeof(int), SEEK_SET) == (off_t) -1) {
mas01cr@204 644 error("error seeking to data", powerFileName, "lseek");
mas01cr@204 645 }
mas01cr@204 646 int count = read(powerfd, qPower, numVectors * sizeof(double));
mas01cr@204 647 if (count == -1) {
mas01cr@204 648 error("error reading data", powerFileName, "read");
mas01cr@204 649 }
mas01cr@204 650 if ((unsigned) count != numVectors * sizeof(double)) {
mas01cr@204 651 error("short read", powerFileName);
mas01cr@204 652 }
mas01cr@204 653
mas01cr@204 654 sequence_sum(qpPtr, numVectors, sequenceLength);
mas01cr@204 655 sequence_average(qpPtr, numVectors, sequenceLength);
mas01cr@204 656 }
mas01cr@204 657
mas01cr@204 658 if(verbosity>1) {
mas01cr@204 659 std::cerr << "done." << std::endl;
mas01cr@204 660 }
mas01cr@204 661
mas01cr@204 662 if(verbosity>1) {
mas01cr@204 663 std::cerr << "matching tracks..." << std::endl;
mas01cr@204 664 }
mas01cr@204 665
mas01cr@204 666 assert(pointNN>0 && pointNN<=O2_MAXNN);
mas01cr@204 667 assert(trackNN>0 && trackNN<=O2_MAXNN);
mas01cr@204 668
mas01cr@204 669 // Make temporary dynamic memory for results
mas01cr@204 670 double trackDistances[trackNN];
mas01cr@204 671 unsigned trackIDs[trackNN];
mas01cr@204 672 unsigned trackQIndexes[trackNN];
mas01cr@204 673 unsigned trackSIndexes[trackNN];
mas01cr@204 674
mas01cr@204 675 double distances[pointNN];
mas01cr@204 676 unsigned qIndexes[pointNN];
mas01cr@204 677 unsigned sIndexes[pointNN];
mas01cr@204 678
mas01cr@204 679
mas01cr@204 680 unsigned k,l,n,track,trackOffset=0, HOP_SIZE=sequenceHop, wL=sequenceLength;
mas01cr@204 681 double thisDist;
mas01cr@204 682
mas01cr@204 683 for(k=0; k<pointNN; k++){
mas01cr@204 684 distances[k]=0.0;
mas01cr@204 685 qIndexes[k]=~0;
mas01cr@204 686 sIndexes[k]=~0;
mas01cr@204 687 }
mas01cr@204 688
mas01cr@204 689 for(k=0; k<trackNN; k++){
mas01cr@204 690 trackDistances[k]=0.0;
mas01cr@204 691 trackQIndexes[k]=~0;
mas01cr@204 692 trackSIndexes[k]=~0;
mas01cr@204 693 trackIDs[k]=~0;
mas01cr@204 694 }
mas01cr@204 695
mas01cr@204 696 // Timestamp and durations processing
mas01cr@204 697 double meanQdur = 0;
mas01cr@204 698 double *timesdata = 0;
mas01cr@204 699 double *querydurs = 0;
mas01cr@204 700 double *meanDBdur = 0;
mas01cr@204 701
mas01cr@204 702 if(usingTimes && !(dbH->flags & O2_FLAG_TIMES)){
mas01cr@204 703 std::cerr << "warning: ignoring query timestamps for non-timestamped database" << std::endl;
mas01cr@204 704 usingTimes=0;
mas01cr@204 705 }
mas01cr@204 706
mas01cr@204 707 else if(!usingTimes && (dbH->flags & O2_FLAG_TIMES))
mas01cr@204 708 std::cerr << "warning: no timestamps given for query. Ignoring database timestamps." << std::endl;
mas01cr@204 709
mas01cr@204 710 else if(usingTimes && (dbH->flags & O2_FLAG_TIMES)){
mas01cr@204 711 timesdata = new double[2*numVectors];
mas01cr@204 712 querydurs = new double[numVectors];
mas01cr@204 713
mas01cr@204 714 insertTimeStamps(numVectors, timesFile, timesdata);
mas01cr@204 715 // Calculate durations of points
mas01cr@204 716 for(k=0; k<numVectors-1; k++){
mas01cr@204 717 querydurs[k] = timesdata[2*k+1] - timesdata[2*k];
mas01cr@204 718 meanQdur += querydurs[k];
mas01cr@204 719 }
mas01cr@204 720 meanQdur/=k;
mas01cr@204 721 if(verbosity>1) {
mas01cr@204 722 std::cerr << "mean query file duration: " << meanQdur << std::endl;
mas01cr@204 723 }
mas01cr@204 724 meanDBdur = new double[dbH->numFiles];
mas01cr@204 725 assert(meanDBdur);
mas01cr@204 726 for(k=0; k<dbH->numFiles; k++){
mas01cr@204 727 meanDBdur[k]=0.0;
mas01cr@204 728 for(j=0; j<trackTable[k]-1 ; j++) {
mas01cr@204 729 meanDBdur[k]+=timesTable[2*j+1]-timesTable[2*j];
mas01cr@204 730 }
mas01cr@204 731 meanDBdur[k]/=j;
mas01cr@204 732 }
mas01cr@204 733 }
mas01cr@204 734
mas01cr@204 735 if(usingQueryPoint)
mas01cr@204 736 if(queryPoint>numVectors || queryPoint>numVectors-wL+1)
mas01cr@204 737 error("queryPoint > numVectors-wL+1 in query");
mas01cr@204 738 else{
mas01cr@204 739 if(verbosity>1) {
mas01cr@204 740 std::cerr << "query point: " << queryPoint << std::endl; std::cerr.flush();
mas01cr@204 741 }
mas01cr@204 742 query = query + queryPoint*dbH->dim;
mas01cr@204 743 qnPtr = qnPtr + queryPoint;
mas01cr@204 744 if (usingPower) {
mas01cr@204 745 qpPtr = qpPtr + queryPoint;
mas01cr@204 746 }
mas01cr@204 747 numVectors=wL;
mas01cr@204 748 }
mas01cr@204 749
mas01cr@204 750 double ** D = 0; // Differences query and target
mas01cr@204 751 double ** DD = 0; // Matched filter distance
mas01cr@204 752
mas01cr@204 753 D = new double*[numVectors];
mas01cr@204 754 assert(D);
mas01cr@204 755 DD = new double*[numVectors];
mas01cr@204 756 assert(DD);
mas01cr@204 757
mas01cr@204 758 gettimeofday(&tv1, NULL);
mas01cr@204 759 unsigned processedTracks = 0;
mas01cr@204 760 unsigned successfulTracks=0;
mas01cr@204 761
mas01cr@204 762 double* qp;
mas01cr@204 763 double* sp;
mas01cr@204 764 double* dp;
mas01cr@204 765
mas01cr@204 766 // build track offset table
mas01cr@204 767 off_t *trackOffsetTable = new off_t[dbH->numFiles];
mas01cr@204 768 unsigned cumTrack=0;
mas01cr@204 769 off_t trackIndexOffset;
mas01cr@204 770 for(k=0; k<dbH->numFiles;k++){
mas01cr@204 771 trackOffsetTable[k]=cumTrack;
mas01cr@204 772 cumTrack+=trackTable[k]*dbH->dim;
mas01cr@204 773 }
mas01cr@204 774
mas01cr@204 775 char nextKey [MAXSTR];
mas01cr@204 776
mas01cr@204 777 // chi^2 statistics
mas01cr@204 778 double sampleCount = 0;
mas01cr@204 779 double sampleSum = 0;
mas01cr@204 780 double logSampleSum = 0;
mas01cr@204 781 double minSample = 1e9;
mas01cr@204 782 double maxSample = 0;
mas01cr@204 783
mas01cr@204 784 // Track loop
mas01cr@204 785 size_t data_buffer_size = 0;
mas01cr@204 786 double *data_buffer = 0;
mas01cr@204 787 lseek(dbfid, dbH->dataOffset, SEEK_SET);
mas01cr@204 788
mas01cr@204 789 for(processedTracks=0, track=0 ; processedTracks < dbH->numFiles ; track++, processedTracks++){
mas01cr@204 790
mas01cr@204 791 trackOffset = trackOffsetTable[track]; // numDoubles offset
mas01cr@204 792
mas01cr@204 793 // get trackID from file if using a control file
mas01cr@204 794 if(trackFile) {
mas01cr@204 795 trackFile->getline(nextKey,MAXSTR);
mas01cr@204 796 if(!trackFile->eof()) {
mas01cr@204 797 track = getKeyPos(nextKey);
mas01cr@204 798 trackOffset = trackOffsetTable[track];
mas01cr@204 799 lseek(dbfid, dbH->dataOffset + trackOffset * sizeof(double), SEEK_SET);
mas01cr@204 800 } else {
mas01cr@204 801 break;
mas01cr@204 802 }
mas01cr@204 803 }
mas01cr@204 804
mas01cr@204 805 trackIndexOffset=trackOffset/dbH->dim; // numVectors offset
mas01cr@204 806
mas01cr@204 807 if(sequenceLength<=trackTable[track]){ // test for short sequences
mas01cr@204 808
mas01cr@204 809 if(verbosity>7) {
mas01cr@204 810 std::cerr << track << "." << trackIndexOffset << "." << trackTable[track] << " | ";std::cerr.flush();
mas01cr@204 811 }
mas01cr@204 812
mas01cr@204 813 if (trackTable[track] * sizeof(double) * dbH->dim > data_buffer_size) {
mas01cr@204 814 if(data_buffer) {
mas01cr@204 815 free(data_buffer);
mas01cr@204 816 }
mas01cr@204 817 {
mas01cr@204 818 data_buffer_size = trackTable[track] * sizeof(double) * dbH->dim;
mas01cr@204 819 void *tmp = malloc(data_buffer_size);
mas01cr@204 820 if (tmp == NULL) {
mas01cr@204 821 error("error allocating data buffer");
mas01cr@204 822 }
mas01cr@204 823 data_buffer = (double *) tmp;
mas01cr@204 824 }
mas01cr@204 825 }
mas01cr@204 826
mas01cr@204 827 read(dbfid, data_buffer, trackTable[track] * sizeof(double) * dbH->dim);
mas01cr@204 828
mas01cr@207 829 // Sum products matrix
mas01cr@207 830 for(j=0; j<numVectors;j++){
mas01cr@207 831 D[j]=new double[trackTable[track]];
mas01cr@207 832 assert(D[j]);
mas01cr@207 833
mas01cr@207 834 }
mas01cr@207 835
mas01cr@207 836 // Matched filter matrix
mas01cr@207 837 for(j=0; j<numVectors;j++){
mas01cr@207 838 DD[j]=new double[trackTable[track]];
mas01cr@207 839 assert(DD[j]);
mas01cr@207 840 }
mas01cr@207 841
mas01cr@204 842 // Dot product
mas01cr@204 843 for(j=0; j<numVectors; j++)
mas01cr@204 844 for(k=0; k<trackTable[track]; k++){
mas01cr@204 845 qp=query+j*dbH->dim;
mas01cr@204 846 sp=data_buffer+k*dbH->dim;
mas01cr@204 847 DD[j][k]=0.0; // Initialize matched filter array
mas01cr@204 848 dp=&D[j][k]; // point to correlation cell j,k
mas01cr@204 849 *dp=0.0; // initialize correlation cell
mas01cr@204 850 l=dbH->dim; // size of vectors
mas01cr@204 851 while(l--)
mas01cr@204 852 *dp+=*qp++**sp++;
mas01cr@204 853 }
mas01cr@204 854
mas01cr@204 855 // Matched Filter
mas01cr@204 856 // HOP SIZE == 1
mas01cr@204 857 double* spd;
mas01cr@204 858 if(HOP_SIZE==1){ // HOP_SIZE = shingleHop
mas01cr@204 859 for(w=0; w<wL; w++)
mas01cr@204 860 for(j=0; j<numVectors-w; j++){
mas01cr@204 861 sp=DD[j];
mas01cr@204 862 spd=D[j+w]+w;
mas01cr@204 863 k=trackTable[track]-w;
mas01cr@204 864 while(k--)
mas01cr@204 865 *sp+++=*spd++;
mas01cr@204 866 }
mas01cr@204 867 }
mas01cr@204 868
mas01cr@204 869 else{ // HOP_SIZE != 1
mas01cr@204 870 for(w=0; w<wL; w++)
mas01cr@204 871 for(j=0; j<numVectors-w; j+=HOP_SIZE){
mas01cr@204 872 sp=DD[j];
mas01cr@204 873 spd=D[j+w]+w;
mas01cr@204 874 for(k=0; k<trackTable[track]-w; k+=HOP_SIZE){
mas01cr@204 875 *sp+=*spd;
mas01cr@204 876 sp+=HOP_SIZE;
mas01cr@204 877 spd+=HOP_SIZE;
mas01cr@204 878 }
mas01cr@204 879 }
mas01cr@204 880 }
mas01cr@204 881
mas01cr@204 882 if(verbosity>3 && usingTimes) {
mas01cr@204 883 std::cerr << "meanQdur=" << meanQdur << " meanDBdur=" << meanDBdur[track] << std::endl;
mas01cr@204 884 std::cerr.flush();
mas01cr@204 885 }
mas01cr@204 886
mas01cr@204 887 if(!usingTimes ||
mas01cr@204 888 (usingTimes
mas01cr@204 889 && fabs(meanDBdur[track]-meanQdur)<meanQdur*timesTol)){
mas01cr@204 890
mas01cr@204 891 if(verbosity>3 && usingTimes) {
mas01cr@204 892 std::cerr << "within duration tolerance." << std::endl;
mas01cr@204 893 std::cerr.flush();
mas01cr@204 894 }
mas01cr@204 895
mas01cr@204 896 // Search for minimum distance by shingles (concatenated vectors)
mas01cr@204 897 for(j=0;j<=numVectors-wL;j+=HOP_SIZE)
mas01cr@204 898 for(k=0;k<=trackTable[track]-wL;k+=HOP_SIZE){
mas01cr@204 899 thisDist=2-(2/(qnPtr[j]*sNorm[trackIndexOffset+k]))*DD[j][k];
mas01cr@204 900 if(verbosity>9) {
mas01cr@204 901 std::cerr << thisDist << " " << qnPtr[j] << " " << sNorm[trackIndexOffset+k] << std::endl;
mas01cr@204 902 }
mas01cr@204 903 // Gather chi^2 statistics
mas01cr@204 904 if(thisDist<minSample)
mas01cr@204 905 minSample=thisDist;
mas01cr@204 906 else if(thisDist>maxSample)
mas01cr@204 907 maxSample=thisDist;
mas01cr@204 908 if(thisDist>1e-9){
mas01cr@204 909 sampleCount++;
mas01cr@204 910 sampleSum+=thisDist;
mas01cr@204 911 logSampleSum+=log(thisDist);
mas01cr@204 912 }
mas01cr@204 913
mas01cr@204 914 // diffL2 = fabs(qnPtr[j] - sNorm[trackIndexOffset+k]);
mas01cr@204 915 // Power test
mas01cr@204 916 if (usingPower) {
mas01cr@204 917 if (!(powers_acceptable(qpPtr[j], sPower[trackIndexOffset + k]))) {
mas01cr@204 918 thisDist = 1000000.0;
mas01cr@204 919 }
mas01cr@204 920 }
mas01cr@204 921
mas01cr@204 922 if(thisDist>=0 && thisDist<=radius){
mas01cr@204 923 distances[0]++; // increment count
mas01cr@204 924 break; // only need one track point per query point
mas01cr@204 925 }
mas01cr@204 926 }
mas01cr@204 927 // How many points were below threshold ?
mas01cr@204 928 thisDist=distances[0];
mas01cr@204 929
mas01cr@204 930 // Let's see the distances then...
mas01cr@204 931 if(verbosity>3) {
mas01cr@204 932 std::cerr << fileTable+track*O2_FILETABLESIZE << " " << thisDist << std::endl;
mas01cr@204 933 }
mas01cr@204 934
mas01cr@204 935 // All the track stuff goes here
mas01cr@204 936 n=trackNN;
mas01cr@204 937 while(n--){
mas01cr@204 938 if(thisDist>trackDistances[n]){
mas01cr@204 939 if((n==0 || thisDist<=trackDistances[n-1])){
mas01cr@204 940 // Copy all values above up the queue
mas01cr@204 941 for( l=trackNN-1 ; l > n ; l--){
mas01cr@204 942 trackDistances[l]=trackDistances[l-1];
mas01cr@204 943 trackQIndexes[l]=trackQIndexes[l-1];
mas01cr@204 944 trackSIndexes[l]=trackSIndexes[l-1];
mas01cr@204 945 trackIDs[l]=trackIDs[l-1];
mas01cr@204 946 }
mas01cr@204 947 trackDistances[n]=thisDist;
mas01cr@204 948 trackQIndexes[n]=qIndexes[0];
mas01cr@204 949 trackSIndexes[n]=sIndexes[0];
mas01cr@204 950 successfulTracks++;
mas01cr@204 951 trackIDs[n]=track;
mas01cr@204 952 break;
mas01cr@204 953 }
mas01cr@204 954 }
mas01cr@204 955 else
mas01cr@204 956 break;
mas01cr@204 957 }
mas01cr@204 958 } // Duration match
mas01cr@204 959
mas01cr@204 960 // Clean up current track
mas01cr@204 961 if(D!=NULL){
mas01cr@204 962 for(j=0; j<numVectors; j++)
mas01cr@204 963 delete[] D[j];
mas01cr@204 964 }
mas01cr@204 965
mas01cr@204 966 if(DD!=NULL){
mas01cr@204 967 for(j=0; j<numVectors; j++)
mas01cr@204 968 delete[] DD[j];
mas01cr@204 969 }
mas01cr@204 970 }
mas01cr@204 971 // per-track reset array values
mas01cr@204 972 for(unsigned k=0; k<pointNN; k++){
mas01cr@204 973 distances[k]=0.0;
mas01cr@204 974 qIndexes[k]=~0;
mas01cr@204 975 sIndexes[k]=~0;
mas01cr@204 976 }
mas01cr@204 977 }
mas01cr@204 978
mas01cr@204 979 free(data_buffer);
mas01cr@204 980
mas01cr@204 981 gettimeofday(&tv2,NULL);
mas01cr@204 982 if(verbosity>1) {
mas01cr@204 983 std::cerr << std::endl << "processed tracks :" << processedTracks << " matched tracks: " << successfulTracks << " elapsed time:"
mas01cr@204 984 << ( tv2.tv_sec*1000 + tv2.tv_usec/1000 ) - ( tv1.tv_sec*1000+tv1.tv_usec/1000 ) << " msec" << std::endl;
mas01cr@204 985 std::cerr << "sampleCount: " << sampleCount << " sampleSum: " << sampleSum << " logSampleSum: " << logSampleSum
mas01cr@204 986 << " minSample: " << minSample << " maxSample: " << maxSample << std::endl;
mas01cr@204 987 }
mas01cr@204 988
mas01cr@204 989 if(adbQueryResponse==0){
mas01cr@204 990 if(verbosity>1) {
mas01cr@204 991 std::cerr<<std::endl;
mas01cr@204 992 }
mas01cr@204 993 // Output answer
mas01cr@204 994 // Loop over nearest neighbours
mas01cr@204 995 for(k=0; k < std::min(trackNN,successfulTracks); k++)
mas01cr@204 996 std::cout << fileTable+trackIDs[k]*O2_FILETABLESIZE << " " << trackDistances[k] << std::endl;
mas01cr@204 997 }
mas01cr@204 998 else{ // Process Web Services Query
mas01cr@204 999 int listLen = std::min(trackNN, processedTracks);
mas01cr@204 1000 adbQueryResponse->result.__sizeRlist=listLen;
mas01cr@204 1001 adbQueryResponse->result.__sizeDist=listLen;
mas01cr@204 1002 adbQueryResponse->result.__sizeQpos=listLen;
mas01cr@204 1003 adbQueryResponse->result.__sizeSpos=listLen;
mas01cr@204 1004 adbQueryResponse->result.Rlist= new char*[listLen];
mas01cr@204 1005 adbQueryResponse->result.Dist = new double[listLen];
mas01cr@204 1006 adbQueryResponse->result.Qpos = new unsigned int[listLen];
mas01cr@204 1007 adbQueryResponse->result.Spos = new unsigned int[listLen];
mas01cr@204 1008 for(k=0; k<(unsigned)adbQueryResponse->result.__sizeRlist; k++){
mas01cr@204 1009 adbQueryResponse->result.Rlist[k]=new char[O2_MAXFILESTR];
mas01cr@204 1010 adbQueryResponse->result.Dist[k]=trackDistances[k];
mas01cr@204 1011 adbQueryResponse->result.Qpos[k]=trackQIndexes[k];
mas01cr@204 1012 adbQueryResponse->result.Spos[k]=trackSIndexes[k];
mas01cr@204 1013 sprintf(adbQueryResponse->result.Rlist[k], "%s", fileTable+trackIDs[k]*O2_FILETABLESIZE);
mas01cr@204 1014 }
mas01cr@204 1015 }
mas01cr@204 1016
mas01cr@204 1017 // Clean up
mas01cr@204 1018 if(trackOffsetTable)
mas01cr@204 1019 delete[] trackOffsetTable;
mas01cr@204 1020 if(queryCopy)
mas01cr@204 1021 delete[] queryCopy;
mas01cr@204 1022 if(qNorm)
mas01cr@204 1023 delete[] qNorm;
mas01cr@204 1024 if(sNorm)
mas01cr@204 1025 delete[] sNorm;
mas01cr@204 1026 if(qPower)
mas01cr@204 1027 delete[] qPower;
mas01cr@204 1028 if(sPower)
mas01cr@204 1029 delete[] sPower;
mas01cr@204 1030 if(D)
mas01cr@204 1031 delete[] D;
mas01cr@204 1032 if(DD)
mas01cr@204 1033 delete[] DD;
mas01cr@204 1034 if(timesdata)
mas01cr@204 1035 delete[] timesdata;
mas01cr@204 1036 if(querydurs)
mas01cr@204 1037 delete[] querydurs;
mas01cr@204 1038 if(meanDBdur)
mas01cr@204 1039 delete[] meanDBdur;
mas01cr@204 1040 }
mas01cr@204 1041
mas01cr@204 1042 // Unit norm block of features
mas01cr@204 1043 void audioDB::unitNorm(double* X, unsigned dim, unsigned n, double* qNorm){
mas01cr@204 1044 unsigned d;
mas01cr@204 1045 double L2, *p;
mas01cr@204 1046 if(verbosity>2) {
mas01cr@204 1047 std::cerr << "norming " << n << " vectors...";std::cerr.flush();
mas01cr@204 1048 }
mas01cr@204 1049 while(n--){
mas01cr@204 1050 p=X;
mas01cr@204 1051 L2=0.0;
mas01cr@204 1052 d=dim;
mas01cr@204 1053 while(d--){
mas01cr@204 1054 L2+=*p**p;
mas01cr@204 1055 p++;
mas01cr@204 1056 }
mas01cr@204 1057 /* L2=sqrt(L2);*/
mas01cr@204 1058 if(qNorm)
mas01cr@204 1059 *qNorm++=L2;
mas01cr@204 1060 /*
mas01cr@204 1061 oneOverL2 = 1.0/L2;
mas01cr@204 1062 d=dim;
mas01cr@204 1063 while(d--){
mas01cr@204 1064 *X*=oneOverL2;
mas01cr@204 1065 X++;
mas01cr@204 1066 */
mas01cr@204 1067 X+=dim;
mas01cr@204 1068 }
mas01cr@204 1069 if(verbosity>2) {
mas01cr@204 1070 std::cerr << "done..." << std::endl;
mas01cr@204 1071 }
mas01cr@204 1072 }