annotate sample.cpp @ 280:3be15407e814

Merge sampling branch (-r361:405, though I hope that the branch is now finished) onto trunk. API developers take note. Things still to clear up: * whether the threshold distance it currently reports bears any relation to reality; * if not, how to bring it a bit more into alignment; * minor code cleanup issues in sample.cpp; * incorporating --absolute-threshold handling into sampling; * writing suitable test cases.
author mas01cr
date Wed, 02 Jul 2008 14:07:10 +0000
parents
children 0e44de38d675
rev   line source
mas01cr@280 1 #include "audioDB.h"
mas01cr@280 2
mas01cr@280 3 #include <gsl/gsl_sf.h>
mas01cr@280 4 #include <gsl/gsl_rng.h>
mas01cr@280 5
mas01cr@280 6 static
mas01cr@280 7 double yfun(double d) {
mas01cr@280 8 return gsl_sf_log(d) - gsl_sf_psi(d);
mas01cr@280 9 }
mas01cr@280 10
mas01cr@280 11 static
mas01cr@280 12 double yinv(double y) {
mas01cr@280 13 double a = 1.0e-5;
mas01cr@280 14 double b = 1000.0;
mas01cr@280 15
mas01cr@280 16 double ay = yfun(a);
mas01cr@280 17 double by = yfun(b);
mas01cr@280 18
mas01cr@280 19 double c, cy;
mas01cr@280 20
mas01cr@280 21 /* FIXME: simple binary search; there's probably some clever solver
mas01cr@280 22 in gsl somewhere which is less sucky. */
mas01cr@280 23 while ((b - a) > 1.0e-5) {
mas01cr@280 24 c = (a + b) / 2;
mas01cr@280 25 cy = yfun(c);
mas01cr@280 26 if (cy > y) {
mas01cr@280 27 a = c;
mas01cr@280 28 ay = cy;
mas01cr@280 29 } else {
mas01cr@280 30 b = c;
mas01cr@280 31 by = cy;
mas01cr@280 32 }
mas01cr@280 33 }
mas01cr@280 34
mas01cr@280 35 return c;
mas01cr@280 36 }
mas01cr@280 37
mas01cr@280 38 unsigned audioDB::random_track(unsigned *propTable, unsigned total, gsl_rng *rng) {
mas01cr@280 39 /* FIXME: make this O(1) by using the alias-rejection method, or
mas01cr@280 40 some other sensible method of sampling from a discrete
mas01cr@280 41 distribution. */
mas01cr@280 42 double thing = gsl_rng_uniform(rng);
mas01cr@280 43 unsigned sofar = 0;
mas01cr@280 44 for (unsigned int i = 0; i < dbH->numFiles; i++) {
mas01cr@280 45 sofar += propTable[i];
mas01cr@280 46 if (thing < ((double) sofar / (double) total)) {
mas01cr@280 47 return i;
mas01cr@280 48 }
mas01cr@280 49 }
mas01cr@280 50 error("fell through in random_track()");
mas01cr@280 51
mas01cr@280 52 /* FIXME: decorate error's declaration so that this isn't necessary */
mas01cr@280 53 return 0;
mas01cr@280 54 }
mas01cr@280 55
mas01cr@280 56 void audioDB::sample(const char *dbName) {
mas01cr@280 57 initTables(dbName, 0);
mas01cr@280 58
mas01cr@280 59 gsl_rng *rng = gsl_rng_alloc(gsl_rng_mt19937);
mas01cr@280 60
mas01cr@280 61 /* FIXME: in Real Life we'll want to initialize the RNG using
mas01cr@280 62 /dev/random or the current time or something, like this:
mas01cr@280 63
mas01cr@280 64 unsigned int seed;
mas01cr@280 65 int fd = open("/dev/urandom", O_RDONLY);
mas01cr@280 66 read(fd, &seed, 4);
mas01cr@280 67
mas01cr@280 68 gsl_rng_set(rng, seed);
mas01cr@280 69 */
mas01cr@280 70
mas01cr@280 71 // build track offset table (FIXME: cut'n'pasted from query.cpp)
mas01cr@280 72 off_t *trackOffsetTable = new off_t[dbH->numFiles];
mas01cr@280 73 unsigned cumTrack=0;
mas01cr@280 74 for(unsigned int k = 0; k < dbH->numFiles; k++){
mas01cr@280 75 trackOffsetTable[k] = cumTrack;
mas01cr@280 76 cumTrack += trackTable[k] * dbH->dim;
mas01cr@280 77 }
mas01cr@280 78
mas01cr@280 79 unsigned *propTable = new unsigned[dbH->numFiles];
mas01cr@280 80 unsigned total = 0;
mas01cr@280 81 unsigned count = 0;
mas01cr@280 82
mas01cr@280 83 for (unsigned int i = 0; i < dbH->numFiles; i++) {
mas01cr@280 84 /* what kind of a stupid language doesn't have binary max(), let
mas01cr@280 85 alone nary? */
mas01cr@280 86 unsigned int prop = trackTable[i] - sequenceLength + 1;
mas01cr@280 87 prop = prop > 0 ? prop : 0;
mas01cr@280 88 if (prop > 0)
mas01cr@280 89 count++;
mas01cr@280 90 propTable[i] = prop;
mas01cr@280 91 total += prop;
mas01cr@280 92 }
mas01cr@280 93
mas01cr@280 94 if (total == 0) {
mas01cr@280 95 error("no sequences of this sequence length in the database", dbName);
mas01cr@280 96 }
mas01cr@280 97
mas01cr@280 98 unsigned int vlen = dbH->dim * sequenceLength;
mas01cr@280 99 double *v1 = new double[vlen];
mas01cr@280 100 double *v2 = new double[vlen];
mas01cr@280 101 double v1norm, v2norm, v1v2;
mas01cr@280 102
mas01cr@280 103 double sumdist = 0;
mas01cr@280 104 double sumlogdist = 0;
mas01cr@280 105
mas01cr@280 106 for (unsigned int i = 0; i < nsamples;) {
mas01cr@280 107 unsigned track1 = random_track(propTable, total, rng);
mas01cr@280 108 unsigned track2 = random_track(propTable, total, rng);
mas01cr@280 109
mas01cr@280 110 if(track1 == track2)
mas01cr@280 111 continue;
mas01cr@280 112
mas01cr@280 113 unsigned i1 = gsl_rng_uniform_int(rng, propTable[track1]);
mas01cr@280 114 unsigned i2 = gsl_rng_uniform_int(rng, propTable[track2]);
mas01cr@280 115
mas01cr@280 116 VERB_LOG(1, "%d %d, %d %d | ", track1, i1, track2, i2);
mas01cr@280 117
mas01cr@280 118 /* FIXME: this seeking, reading and distance calculation should
mas01cr@280 119 share more code with the query loop */
mas01cr@280 120 lseek(dbfid, dbH->dataOffset + trackOffsetTable[track1] * sizeof(double) + i1 * dbH->dim * sizeof(double), SEEK_SET);
mas01cr@280 121 read(dbfid, v1, dbH->dim * sequenceLength * sizeof(double));
mas01cr@280 122
mas01cr@280 123 lseek(dbfid, dbH->dataOffset + trackOffsetTable[track2] * sizeof(double) + i2 * dbH->dim * sizeof(double), SEEK_SET);
mas01cr@280 124 read(dbfid, v2, dbH->dim * sequenceLength * sizeof(double));
mas01cr@280 125
mas01cr@280 126 v1norm = 0;
mas01cr@280 127 v2norm = 0;
mas01cr@280 128 v1v2 = 0;
mas01cr@280 129
mas01cr@280 130 for (unsigned int j = 0; j < vlen; j++) {
mas01cr@280 131 v1norm += v1[j]*v1[j];
mas01cr@280 132 v2norm += v2[j]*v2[j];
mas01cr@280 133 v1v2 += v1[j]*v2[j];
mas01cr@280 134 }
mas01cr@280 135
mas01cr@280 136 /* FIXME: we must deal with infinities better than this; there
mas01cr@280 137 could be all sorts of NaNs from arbitrary features. Best
mas01cr@280 138 include power thresholds or something... */
mas01cr@280 139 if(isfinite(v1norm) && isfinite(v2norm) && isfinite(v1v2)) {
mas01cr@280 140
mas01cr@280 141 VERB_LOG(1, "%f %f %f | ", v1norm, v2norm, v1v2);
mas01cr@280 142 /* assume normalizedDistance == true for now */
mas01cr@280 143 /* FIXME: not convinced that the statistics we calculated in
mas01cr@280 144 TASLP paper are technically valid for normalizedDistance */
mas01cr@280 145
mas01cr@280 146 double dist = 2 - 2 * v1v2 / sqrt(v1norm * v2norm);
mas01cr@280 147 // double dist = v1norm + v2norm - 2*v1v2;
mas01cr@280 148
mas01cr@280 149 VERB_LOG(1, "%f %f\n", dist, log(dist));
mas01cr@280 150 sumdist += dist;
mas01cr@280 151 sumlogdist += log(dist);
mas01cr@280 152 i++;
mas01cr@280 153 } else {
mas01cr@280 154 VERB_LOG(1, "infinity/NaN found: %f %f %f\n", v1norm, v2norm, v1v2);
mas01cr@280 155 }
mas01cr@280 156 }
mas01cr@280 157
mas01cr@280 158 /* FIXME: the mean isn't really what we should be reporting here */
mas01cr@280 159 unsigned meanN = total / count;
mas01cr@280 160
mas01cr@280 161 double sigma2 = sumdist / (sequenceLength * dbH->dim * nsamples);
mas01cr@280 162 double d = 2 * yinv(log(sumdist/nsamples) - sumlogdist/nsamples);
mas01cr@280 163
mas01cr@280 164 std::cout << "Summary statistics" << std::endl;
mas01cr@280 165 std::cout << "number of samples: " << nsamples << std::endl;
mas01cr@280 166 std::cout << "sum of distances (S): " << sumdist << std::endl;
mas01cr@280 167 std::cout << "sum of log distances (L): " << sumlogdist << std::endl;
mas01cr@280 168
mas01cr@280 169 /* FIXME: we'll also want some more summary statistics based on
mas01cr@280 170 propTable, for the minimum-of-X estimate */
mas01cr@280 171 std::cout << "mean number of applicable sequences (N): " << meanN << std::endl;
mas01cr@280 172 std::cout << std::endl;
mas01cr@280 173 std::cout << "Estimated parameters" << std::endl;
mas01cr@280 174 std::cout << "sigma^2: " << sigma2 << "; ";
mas01cr@280 175 std::cout << "Msigma^2: " << sumdist / nsamples << std::endl;
mas01cr@280 176 std::cout << "d: " << d << std::endl;
mas01cr@280 177
mas01cr@280 178 double logw = (2 / d) * gsl_sf_log(-gsl_sf_log(0.99));
mas01cr@280 179 double logxthresh = gsl_sf_log(sumdist / nsamples) + logw
mas01cr@280 180 - (2 / d) * gsl_sf_log(meanN)
mas01cr@280 181 - gsl_sf_log(d/2)
mas01cr@280 182 - (2 / d) * gsl_sf_log(2 / d)
mas01cr@280 183 + (2 / d) * gsl_sf_lngamma(d / 2);
mas01cr@280 184
mas01cr@280 185 std::cout << "track xthresh: " << exp(logxthresh) << std::endl;
mas01cr@280 186
mas01cr@280 187 delete[] propTable;
mas01cr@280 188 delete[] v1;
mas01cr@280 189 delete[] v2;
mas01cr@280 190 }