Mercurial > hg > aimmat
view aim-mat/modules/usermodule/pitchstrength/PeakPicker.m @ 4:537f939baef0 tip
various bug fixes and changed copyright message
author | Stefan Bleeck <bleeck@gmail.com> |
---|---|
date | Tue, 16 Aug 2011 14:37:17 +0100 |
parents | |
children |
line wrap: on
line source
% % function out = PeakPicker(sig_in, params) % % Find the peaks of a signal % % INPUT VALUES: % sig_in Input signal % params.dyn_thresh dynamic threshold. Off if not used % params.smooth_sigma sigma for smoothing % % % % % RETURN VALUE: % out is an array of a struct % out.x x position of the Peak % out.t according time value % out.y y value of the peak % out.left.[x,t,y] left Minumum % out.right.[x,t,y] right Minumum % % (c) 2003, University of Cambridge, Medical Research Council % Christoph Lindner % (c) 2011, University of Southampton % Maintained by Stefan Bleeck (bleeck@gmail.com) % download of current version is on the soundsoftware site: % http://code.soundsoftware.ac.uk/projects/aimmat % documentation and everything is on http://www.acousticscale.org function out = PeakPicker(sig_in, params) if nargin<2 params=[]; end % % % % ----- Other Parameters ----- % % % % Lowpass param for the higpassfilter % % % LP_sigma_for_HP_filter = getnrpoints(sig_in)/7; % % % LP_sigma_for_smooth = 3; % % % % min width of a peak: upper_threshold+lower_thresh % % % upper_thresh = 0.02*getnrpoints(sig_in); % % % lower_thresh = 0.03*getnrpoints(sig_in); % x is index or position in vector % y is value of the % t is the time domain wich is assigned to the x dimension % the original values befor filtering orig_values = getdata(sig_in)'; if isfield(params,'smooth_sigma') if (params.smooth_sigma~=0) % smooth the curve to kill small side peaks sig_in = smooth(sig_in, params.smooth_sigma); end end values=getdata(sig_in)'; % ------------------- Find the local maxima ------------------------------ % find x positions of ALL local maxima, incl. zero!! max_x = find((values >= [0 values(1:end-1)]) & (values > [values(2:end) 0])); if isfield(params,'smooth_sigma') if (params.smooth_sigma~=0) % smoothing might have shifted the positions of maxima. % Therefore the maximum is the highest of the neighbours in % distance +- smooth_sigma for i=1:length(max_x) start = max_x(i)-params.smooth_sigma; if start<1 start=1; end stop = max_x(i)+params.smooth_sigma; if stop>length(orig_values) stop=length(orig_values); end m = find(orig_values(start:stop) == max(orig_values(start:stop))); m=m(1); max_x(i)=start-1+m; end end end max_y = orig_values(max_x); orig_max_y = orig_values(max_x); % ------------------- Find the local minima ----------------------------- min_x = find((values < [inf values(1:end-1)]) & (values <= [values(2:end) inf])); min_y = values(min_x); % peakpos_x=zeros(1,length(max_x)); peakpos_x=[]; for i=1:length(max_x), % only take the highest peak my = [max_y==max(max_y)]; % find the highest peak % peakpos_x(i) = max_x(my); % x pos of highest peak peakpos_x = [peakpos_x max_x(my)]; max_y = max_y([max_y<max(max_y)]); % del max value in y domain max_x = max_x([max_x ~= peakpos_x(end)]); % and in x domain end peakpos_y = orig_values(peakpos_x); % extract the y vector % --------------- Dynamic Threshold --------------------- % works relativ to the mean if isfield(params,'dyn_thresh') if (params.dyn_thresh~=0) % dynamic thresholding m = mean(orig_values); dthr = params.dyn_thresh.*m; peakpos_x = peakpos_x([peakpos_y>=dthr]); peakpos_y = peakpos_y([peakpos_y>=dthr]); end end maxima = cell(1, length(peakpos_x)); % find the left end right minima that belong to a maximum for i=1:length(peakpos_x) maxima{i}.x = peakpos_x(i); maxima{i}.t = bin2time(sig_in, maxima{i}.x); maxima{i}.y = orig_values(peakpos_x(i)); % find left and right minimum for this maximum maxima{i}.left.x = max(min_x([min_x < maxima{i}.x])); if isempty(maxima{i}.left.x) maxima{i}.left.x = 1; maxima{i}.left.t = 0; maxima{i}.left.y = orig_values(maxima{i}.left.x); else maxima{i}.left.y = orig_values(maxima{i}.left.x); maxima{i}.left.t = bin2time(sig_in, maxima{i}.left.x); end maxima{i}.right.x = min(min_x([min_x > maxima{i}.x])); if isempty(maxima{i}.right.x) maxima{i}.right.x = length(orig_values); maxima{i}.right.t = 0; maxima{i}.right.y = orig_values(maxima{i}.right.x); else maxima{i}.right.y = orig_values(maxima{i}.right.x); maxima{i}.right.t = bin2time(sig_in, maxima{i}.right.x); end end out = maxima;