Mercurial > hg > aimmat
view aim-mat/modules/pcp/gm2002/ff_design50k.m @ 4:537f939baef0 tip
various bug fixes and changed copyright message
author | Stefan Bleeck <bleeck@gmail.com> |
---|---|
date | Tue, 16 Aug 2011 14:37:17 +0100 |
parents | 74dedb26614d |
children |
line wrap: on
line source
%%% May 2001 M.A.Stone. To design FIR filters for fir_corr.c %%% produces output on screen, and to file dummy.??k where ?? is clock freq in kHz %%% select variables below, such as ntaps (output is ntaps +1) fs, %%% and inverse =1 sets for inverse filter, 0 for normal filter. %%% and eq characteristic is set by choosing appropriate variables: %%%% function_str and dB corrn. Ff_ed , Df_ed, Midear, and Hz come %%%% from a separate file [all_corrns.m]. Insert new characteristics %%%% in there, eg ITU_erp_drp/ITU_Hz %%% FORMAT for output file %%% first line is comment %%%% second line is number of taps (preferably odd) %%%% third and subsequent lines are filter taps, one per line, floating point all_corrns; %%%%%% external file for reference corrections, hz, midear, ff_ed, diffuse %%%%%% NB, midear response has limit/flatten-off at lowest freqs to prevent enormous changes < 25 Hz %%%%%%%% design parameters here %%% NB sometomes for inverse, cannot have ntaps too high: claims index error in fir2. fs = 50000; %%%% sampling rate ntaps = 1+2*(round(fs/24)); %% always odd nFFT = 2.^(nextpow2(ntaps) + 1); %% FIR size is ntaps + 1, otherwise delay has extra half-sample %% more taps require kaiser beta to be higher inverse = 0; %% options 0/1 : whether to do forward or inverse filter posh_print = 0; %%% just if we want publication figure, so no output file beta = 6; %%% used to window INVERSE filter shape, and reduce ripple %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Uncomment which of the three sections below you require %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% Section 1 % function_str= sprintf(' Frontal free-field to cochlea correction,fs=%d',fs); % % if fs <= 32000 % dBcorrn = Ff_ed - Midear; %%%%% result in dB % else %% for high fs use truer version, without low freq fiddle % dBcorrn = Ff_ed - MidearAES; %%%%% result in dB % end %%%%%%% Section 2 function_str= sprintf(' Diffuse-field to cochlea correction,fs=%d',fs); if fs <= 32000 dBcorrn = Diffuse - Midear; %%%%% result in dB NB midear is inverted !! else %% for high fs use truer version, without low freq fiddle dBcorrn = Diffuse - MidearAES; %%%%% result in dB end %%%%%%% Section 3 %%%%%% ITU corrections for telephony. %%function_str= sprintf(' ITU Ear Ref Pnt via Drum Ref Pnt to cochlea,fs=%d',fs); %%ITU_on_Hz = interp1(ITU_Hz,ITU_erp_drp,Hz,'spline'); %%%% corrn on linear frequency spacing %%dBcorrn = ITU_on_Hz - Midear; %%%%% result in dB. NB midear is inverted !! %%%% END OF VARIABLE USER ENTRY/SET-UP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% rest is just calculations if ~inverse filename = sprintf('ff.%dk',floor(fs/1000)); else filename = sprintf('iff.%dk',floor(fs/1000)); end if ~posh_print txt_file = fopen(filename,'wt'); end %%%% spacing for linear frequency design grid deltaf = (fs)/nFFT; linf = 0:deltaf:fs/2; %%%% frequencies of FFT bins (DC-nyq-1) if inverse == 1 dBcorrn = -dBcorrn; title_str = strcat('INVERSE',function_str); else title_str= function_str; title_str=' '; end if Hz(end) < fs/2 %% handle interpolation of high fs data dBcorrn_linf = interp1([Hz fs/2],[dBcorrn dBcorrn(end)],linf,'linear'); %%%% corrn on linear frequency spacing else dBcorrn_linf = interp1(Hz,dBcorrn,linf,'linear'); %%%% corrn on linear frequency spacing end %%%%%% limit/flatten-off at lowest freqs dBcorrn_linf_orig = dBcorrn_linf; %%%dBcorrn_linf(2) = dBcorrn_linf(3) - (dBcorrn_linf(3)-dBcorrn_linf(2))/2; %%%dBcorrn_linf(1) = dBcorrn_linf(2); [smth_b smth_a] = butter(4,.5); %% smooth to control roughness eq_linf = filtfilt(smth_b,smth_a,dBcorrn_linf); if posh_print, figure(1); plot(linf,eq_linf,'r','linewidth',1.8); hold on; end %%%%% design fir filter: NB taming of response by (gentle) Kaiser window if inverse halfwid = 10.^(eq_linf/20.); npi = pi*mod((0:nFFT/2),2); %% include phase shift to put response in middle of aperture phase_shift = exp(i*npi); halfwid = halfwid .* phase_shift; fullwid = [halfwid conj(halfwid(nFFT/2:-1:2))]; t_filt = real(ifft(fullwid)); %%%%%%%%figure(2); plot(real(t_filt)); figure(1); ntaps2 = floor(ntaps/2); %% extract relevant portion fir_eq = t_filt((nFFT/2+1)-ntaps2 : (nFFT/2+1)+ntaps2); fir_eq = fir_eq.*kaiser(ntaps,beta)'; else fir_eq = fir2(ntaps,linf./(fs/2),10.^(eq_linf/20.)); % f= 1 is Nyquist end %%%%% and plot response if posh_print [hz,fz] = freqz(fir_eq,1,16384,fs); % GET AN OUTPUT FILE % outfile=fopen('frq_res.ff','w'); % fprintf(outfile,'%.4f,%.4f\n',[fz,20*log10(abs(hz))]'); % fclose(outfile); plot(fz,20*log10(abs(hz)),'b','linewidth',1.8); set(gca,'box','on'); %%%% default with R12 is off title(title_str,'fontsize',13); xlabel('Frequency (Hz)','fontsize',11); ylabel('Relative transmission (dB)','fontsize',11); set(gca,'TickDirMode','manual','TickLength',[0 0]); %% turn off ticking xfl = 20-.1; xfh = fs/2; xticking = [20 50 100 200 500 1000 2000 5000 10000]; if fs/2 > 20e3, xticking = [xticking 20e3]; end if fs/2 > 50e3, xticking = [xticking 50e3]; end % no point in any higher set(gca,'xlim',[xfl xfh],'xscale','log'); set(gca,'xtickmode','manual','xtick',xticking,'xticklabel',xticking); if inverse, dBl = -10; dBh = 40; else dBl = -40; dBh = 10; end yticking = [dBl:5:dBh]; set(gca,'linewidth',1.3,'ylim',[dBl dBh],'fontsize',11); set(gca,'ytickmode','manual','ytick',yticking,'yticklabel',yticking); %% grid on ; set(gca,'GridLineStyle','-'); %%%%%% to overcome bugs in MATLAB with xscale producing extra ticks 20-06-2001 for ix = 1:length(xticking) %% draw ylines line([xticking(ix) xticking(ix)],[min(yticking), max(yticking)],'linewidth',0.6,'linestyle','--'); end for ix = 1:length(yticking) %% draw xlines line([xfl xfh],[yticking(ix), yticking(ix)],'linewidth',0.6,'linestyle','--'); end else freqz(fir_eq,1,8192,fs); subplot(2,1,1); set(gca,'xlim',[10 fs/2],'xscale','log'); hold on ; grid on; semilogx(linf,dBcorrn_linf_orig,'r'); title(title_str); xlabel('frequency (Hz)'); ylabel('dB (red=target, blue=actual)'); subplot(2,1,1); hold off subplot(2,1,2); hold off end hold off % for figure(1) %%%% print out design values to file (and was screen) if ~posh_print fprintf(1,'\nThis version has also created the file %s\n',filename); fprintf(1,'%s\n',function_str); fprintf(1,'%d\n',length(fir_eq)); %% fprintf(1,'%11.8f\n',fir_eq); fprintf(txt_file,'%s\n',function_str); fprintf(txt_file,'%d\n',length(fir_eq)); fprintf(txt_file,'%f\n',fir_eq); fclose(txt_file); end WriteDSAMFIRParFile(fir_eq, fs, inverse);