Mercurial > hg > aimc
view trunk/carfac/sai_test.cc @ 696:d8a404fbc4df
Rename variables to be consistent with the rest of the library.
author | ronw@google.com |
---|---|
date | Thu, 27 Jun 2013 15:30:46 +0000 |
parents | 2e3672df5698 |
children | 2bd09040ecf0 |
line wrap: on
line source
// Copyright 2013, Google, Inc. // Author: Ron Weiss <ronw@google.com> // // This C++ file is part of an implementation of Lyon's cochlear model: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" // to supplement Lyon's upcoming book "Human and Machine Hearing" // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "sai.h" #include <iostream> #include <vector> #include <Eigen/Core> #include "gtest/gtest.h" #include "agc.h" #include "car.h" #include "carfac.h" #include "carfac_output.h" #include "common.h" #include "ihc.h" using testing::Values; using std::vector; vector<ArrayX> CreateZeroSegment(int num_channels, int length) { vector<ArrayX> segment; for (int i = 0; i < length; ++i) { segment.push_back(ArrayX::Zero(num_channels)); } return segment; } void PrintSAIInput(const vector<ArrayX>& input) { for (int i = 0; i < input[0].size(); ++i) { for (int j = 0; j < input.size(); ++j) { std::cout << input[j](i) << " "; } std::cout << "\n"; } } void PrintSAIFrame(const ArrayXX& sai_frame) { for (int i = 0; i < sai_frame.rows(); ++i) { for (int j = 0; j < sai_frame.cols(); ++j) { std::cout << sai_frame(i, j) << " "; } std::cout << "\n"; } std::cout << "\n"; } bool HasPeakAt(const ArrayX& frame, int index) { if (index == 0) { return frame(index) > frame(index + 1); } else if (index == frame.size() - 1) { return frame(index) > frame(index - 1); } return frame(index) > frame(index + 1) && frame(index) > frame(index - 1); } class SAIPeriodicInputTest : public testing::TestWithParam<std::tr1::tuple<int, int>> { protected: void SetUp() { period_ = std::tr1::get<0>(GetParam()); num_channels_ = std::tr1::get<1>(GetParam()); } int period_; int num_channels_; }; TEST_P(SAIPeriodicInputTest, MultiChannelPulseTrain) { vector<ArrayX> segment = CreateZeroSegment(num_channels_, 38); for (int i = 0; i < num_channels_; ++i) { // Begin each channel at a different phase. const int phase = i; for (int j = phase; j < segment.size(); j += period_) { segment[j](i) = 1; } } SAIParams sai_params; sai_params.window_width = segment.size(); sai_params.num_channels = num_channels_; sai_params.width = 15; // Half of the SAI should come from the future. // sai_params.future_lags = sai_params.width / 2; sai_params.future_lags = 0; sai_params.num_window_pos = 2; SAI sai(sai_params); ArrayXX sai_frame; sai.RunSegment(segment, &sai_frame); // The output should have peaks at the same positions, regardless of // input phase. for (int i = 0; i < num_channels_; ++i) { const ArrayX& sai_channel = sai_frame.row(i); for (int j = sai_channel.size() - 1; j >= 0; j -= period_) { EXPECT_TRUE(HasPeakAt(sai_channel, j)); } } std::cout << "Input:\n"; PrintSAIInput(segment); std::cout << "Output:\n"; PrintSAIFrame(sai_frame); } INSTANTIATE_TEST_CASE_P(PeriodicInputVariations, SAIPeriodicInputTest, testing::Combine(Values(25, 10, 5, 2), // periods. Values(1, 2, 15))); // num_channels. TEST(SAITest, CARFACIntegration) { const int kNumEars = 1; const int kNumSamples = 300; vector<vector<float>> segment(kNumEars, vector<float>(kNumSamples, 0.0)); // Sinusoid input. const float kFrequency = 10; Eigen::Map<Eigen::ArrayXf> segment_array(&segment[0][0], segment[0].size()); segment_array.setLinSpaced(kNumSamples, 0.0, 2 * kFrequency * kPi); segment_array.sin(); CARParams car_params; IHCParams ihc_params; AGCParams agc_params; CARFAC carfac(kNumEars, 800, car_params, ihc_params, agc_params); CARFACOutput output(true, false, false, false); const bool kOpenLoop = false; carfac.RunSegment(segment, 0, kNumSamples, kOpenLoop, &output); vector<ArrayX> nap_segment; nap_segment.reserve(output.nap().size()); for (const vector<ArrayX>& frame : output.nap()) { nap_segment.push_back(frame[0]); } SAIParams sai_params; sai_params.window_width = kNumSamples; sai_params.num_channels = carfac.num_channels(); sai_params.width = 20; // Half of the SAI should come from the future. sai_params.future_lags = sai_params.width / 2; sai_params.num_window_pos = 2; SAI sai(sai_params); ArrayXX sai_frame; sai.RunSegment(nap_segment, &sai_frame); // TODO(ronw): Test something about the output. }