Mercurial > hg > aimc
view trunk/carfac/sai_test.cc @ 695:2e3672df5698
Simple integration test between CARFAC and SAI.
The interface between the two classes is pretty clunky because of the
way CARFACOutput stores things. We should work on this, probably by
rotating the outer two dimensions of CARFACOutput (i.e. store outputs
in containers with sizes n_ears x n_samples x n_channels instead of
n_samples x n_ears x n_channels).
author | ronw@google.com |
---|---|
date | Wed, 26 Jun 2013 23:35:47 +0000 |
parents | d04114ac773d |
children | d8a404fbc4df |
line wrap: on
line source
// Copyright 2013, Google, Inc. // Author: Ron Weiss <ronw@google.com> // // This C++ file is part of an implementation of Lyon's cochlear model: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" // to supplement Lyon's upcoming book "Human and Machine Hearing" // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "sai.h" #include <iostream> #include <vector> #include <Eigen/Core> #include "gtest/gtest.h" #include "agc.h" #include "car.h" #include "carfac.h" #include "carfac_output.h" #include "common.h" #include "ihc.h" using testing::Values; using std::vector; vector<ArrayX> CreateZeroSegment(int n_ch, int length) { vector<ArrayX> segment; for (int i = 0; i < length; ++i) { segment.push_back(ArrayX::Zero(n_ch)); } return segment; } void PrintSAIInput(const vector<ArrayX>& input) { for (int i = 0; i < input[0].size(); ++i) { for (int j = 0; j < input.size(); ++j) { std::cout << input[j](i) << " "; } std::cout << "\n"; } } void PrintSAIFrame(const ArrayXX& sai_frame) { for (int i = 0; i < sai_frame.rows(); ++i) { for (int j = 0; j < sai_frame.cols(); ++j) { std::cout << sai_frame(i, j) << " "; } std::cout << "\n"; } std::cout << "\n"; } bool HasPeakAt(const ArrayX& frame, int index) { if (index == 0) { return frame(index) > frame(index + 1); } else if (index == frame.size() - 1) { return frame(index) > frame(index - 1); } return frame(index) > frame(index + 1) && frame(index) > frame(index - 1); } class SAIPeriodicInputTest : public testing::TestWithParam<std::tr1::tuple<int, int>> { protected: void SetUp() { period_ = std::tr1::get<0>(GetParam()); n_ch_ = std::tr1::get<1>(GetParam()); } int period_; int n_ch_; }; TEST_P(SAIPeriodicInputTest, MultiChannelPulseTrain) { vector<ArrayX> segment = CreateZeroSegment(n_ch_, 38); for (int i = 0; i < n_ch_; ++i) { // Begin each channel at a different phase. const int phase = i; for (int j = phase; j < segment.size(); j += period_) { segment[j](i) = 1; } } SAIParams sai_params; sai_params.window_width = segment.size(); sai_params.n_ch = n_ch_; sai_params.width = 15; // Half of the SAI should come from the future. // sai_params.future_lags = sai_params.width / 2; sai_params.future_lags = 0; sai_params.n_window_pos = 2; SAI sai(sai_params); ArrayXX sai_frame; sai.RunSegment(segment, &sai_frame); // The output should have peaks at the same positions, regardless of // input phase. for (int i = 0; i < n_ch_; ++i) { const ArrayX& sai_channel = sai_frame.row(i); for (int j = sai_channel.size() - 1; j >= 0; j -= period_) { EXPECT_TRUE(HasPeakAt(sai_channel, j)); } } std::cout << "Input:\n"; PrintSAIInput(segment); std::cout << "Output:\n"; PrintSAIFrame(sai_frame); } INSTANTIATE_TEST_CASE_P(PeriodicInputVariations, SAIPeriodicInputTest, testing::Combine(Values(25, 10, 5, 2), // periods. Values(1, 2, 15))); // n_ch. TEST(SAITest, CARFACIntegration) { const int n_ears = 1; const int length = 300; vector<vector<float>> segment(n_ears, vector<float>(length, 0.0)); // Sinusoid input. const float kFrequency = 10; Eigen::Map<Eigen::ArrayXf> segment_array(&segment[0][0], segment[0].size()); segment_array.setLinSpaced(length, 0.0, 2 * kFrequency * kPi); segment_array.sin(); CARParams car_params; IHCParams ihc_params; AGCParams agc_params; CARFAC carfac(n_ears, 800, car_params, ihc_params, agc_params); CARFACOutput output(true, false, false, false); const bool kOpenLoop = false; carfac.RunSegment(segment, 0, length, kOpenLoop, &output); vector<ArrayX> nap_segment; nap_segment.reserve(output.nap().size()); for (const vector<ArrayX>& frame : output.nap()) { nap_segment.push_back(frame[0]); } SAIParams sai_params; sai_params.window_width = length; sai_params.n_ch = carfac.num_channels(); sai_params.width = 20; // Half of the SAI should come from the future. sai_params.future_lags = sai_params.width / 2; sai_params.n_window_pos = 2; SAI sai(sai_params); ArrayXX sai_frame; sai.RunSegment(nap_segment, &sai_frame); // TODO(ronw): Test something about the output. }