Mercurial > hg > aimc
view carfac/ear.cc @ 609:aefe2ca0674f
First version of a C++ implementation by Alex Brandmeyer
author | alexbrandmeyer |
---|---|
date | Mon, 13 May 2013 22:51:15 +0000 |
parents | |
children | 01986636257a |
line wrap: on
line source
// // ear.cc // CARFAC Open Source C++ Library // // Created by Alex Brandmeyer on 5/10/13. // // This C++ file is part of an implementation of Lyon's cochlear model: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" // to supplement Lyon's upcoming book "Human and Machine Hearing" // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ear.h" void Ear::InitEar(long fs, CARParams car_p, IHCParams ihc_p, AGCParams agc_p){ car_params_ = car_p; ihc_params_ = ihc_p; agc_params_ = agc_p; n_ch_ = 0; FPType pole_hz = car_params_.first_pole_theta_ * fs / (2 * PI); while (pole_hz > car_params_.min_pole_hz_) { n_ch_++; pole_hz = pole_hz - car_params_.erb_per_step_ * ERBHz(pole_hz, car_params_.erb_break_freq_, car_params_.erb_q_); } FloatArray pole_freqs(n_ch_); pole_hz = car_params_.first_pole_theta_ * fs / (2 * PI); for(int ch=0;ch < n_ch_; ch++){ pole_freqs(ch) = pole_hz; pole_hz = pole_hz - car_params_.erb_per_step_ * ERBHz(pole_hz, car_params_.erb_break_freq_, car_params_.erb_q_); } max_channels_per_octave_ = log(2) / log(pole_freqs(0) / pole_freqs(1)); car_coeffs_.DesignFilters(car_params_, fs, &pole_freqs); agc_coeffs_.DesignAGC(agc_params_, fs, n_ch_); ihc_coeffs_.DesignIHC(ihc_params_, fs, n_ch_); car_state_.InitCARState(car_coeffs_); agc_state_.InitAGCState(agc_coeffs_); ihc_state_.InitIHCState(ihc_coeffs_); } FloatArray Ear::CARStep(FPType input){ FloatArray g(n_ch_); FloatArray zb(n_ch_); FloatArray za(n_ch_); FloatArray v(n_ch_); FloatArray nlf(n_ch_); FloatArray r(n_ch_); FloatArray z1(n_ch_); FloatArray z2(n_ch_); FloatArray zy(n_ch_); FPType in_out; // do the DOHC stuff: g = car_state_.g_memory_ + car_state_.dg_memory_; //interp g zb = car_state_.zb_memory_ + car_state_.dzb_memory_; //AGC interpolation state // update the nonlinear function of "velocity", and zA (delay of z2): za = car_state_.za_memory_; v = car_state_.z2_memory_ - za; nlf = OHC_NLF(v); r = car_coeffs_.r1_coeffs_ + (zb * nlf); // zB * nfl is "undamping" delta r za = car_state_.z2_memory_; // now reduce state by r and rotate with the fixed cos/sin coeffs: z1 = r * ((car_coeffs_.a0_coeffs_ * car_state_.z1_memory_) - (car_coeffs_.c0_coeffs_ * car_state_.z2_memory_)); z2 = r * ((car_coeffs_.c0_coeffs_ * car_state_.z1_memory_) + (car_coeffs_.a0_coeffs_ * car_state_.z2_memory_)); zy = car_coeffs_.h_coeffs_ * z2; // Ripple input-output path, instead of parallel, to avoid delay... // this is the only part that doesn't get computed "in parallel": in_out = input; for (int ch = 0; ch < n_ch_; ch++){ z1(ch) = z1(ch) + in_out; // ripple, saving final channel outputs in zY in_out = g(ch) * (in_out + zy(ch)); zy(ch) = in_out; } car_state_.z1_memory_ = z1; car_state_.z2_memory_ = z2; car_state_.za_memory_ = za; car_state_.zb_memory_ = zb; car_state_.zy_memory_ = zy; car_state_.g_memory_ = g; // car_out is equal to zy state; return zy; } // start with a quadratic nonlinear function, and limit it via a // rational function; make the result go to zero at high // absolute velocities, so it will do nothing there. FloatArray Ear::OHC_NLF(FloatArray velocities){ FloatArray nlf(n_ch_); nlf = 1 / ((velocities * car_coeffs_.velocity_scale_) + (car_coeffs_.v_offset_ * car_coeffs_.v_offset_)); return nlf; } // One sample-time update of inner-hair-cell (IHC) model, including the // detection nonlinearity and one or two capacitor state variables. FloatArray Ear::IHCStep(FloatArray car_out){ FloatArray ihc_out(n_ch_); FloatArray ac_diff(n_ch_); FloatArray conductance(n_ch_); ac_diff = car_out - ihc_state_.ac_coupler_; ihc_state_.ac_coupler_ = ihc_state_.ac_coupler_ + (ihc_coeffs_.ac_coeff_ * ac_diff); if (ihc_coeffs_.just_hwr_) { //TODO Figure out best implementation with Eigen max/min methods for (int ch = 0; ch < n_ch_; ch++){ FPType a; if (ac_diff(ch) > 0){ a = ac_diff(ch); } else { a = 0; } if (a < 2){ ihc_out(ch) = a; } else { ihc_out(ch) = 2; } } } else { conductance = CARFACDetect(ac_diff); if (ihc_coeffs_.one_cap_) { ihc_out = conductance * ihc_state_.cap1_voltage_; ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - (ihc_out * ihc_coeffs_.out1_rate_) + ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_); } else { ihc_out = conductance * ihc_state_.cap2_voltage_; ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) * ihc_coeffs_.out1_rate_) + ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_); ihc_state_.cap2_voltage_ = ihc_state_.cap2_voltage_ - (ihc_out * ihc_coeffs_.out2_rate_) + ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) * ihc_coeffs_.in2_rate_); } // smooth it twice with LPF: ihc_out = ihc_out * ihc_coeffs_.output_gain_; ihc_state_.lpf1_state_ = ihc_state_.lpf1_state_ + (ihc_coeffs_.lpf_coeff_ * (ihc_out - ihc_state_.lpf1_state_)); ihc_state_.lpf2_state_ = ihc_state_.lpf2_state_ + (ihc_coeffs_.lpf_coeff_ * (ihc_state_.lpf1_state_ - ihc_state_.lpf2_state_)); ihc_out = ihc_state_.lpf2_state_ - ihc_coeffs_.rest_output_; } ihc_state_.ihc_accum_ += ihc_out; return ihc_out; } bool Ear::AGCStep(FloatArray ihc_out){ int stage = 0; FloatArray agc_in(n_ch_); agc_in = agc_coeffs_.detect_scale_ * ihc_out; bool updated = AGCRecurse(stage, agc_in); return updated; } bool Ear::AGCRecurse(int stage, FloatArray agc_in){ bool updated = true; // decim factor for this stage, relative to input or prev. stage: int decim = agc_coeffs_.decimation_(stage); // decim phase of this stage (do work on phase 0 only): //TODO FIX MODULO int decim_phase = agc_state_.decim_phase_(stage); decim_phase = decim_phase % decim; agc_state_.decim_phase_(stage) = decim_phase; // accumulate input for this stage from detect or previous stage: agc_state_.input_accum_.block(0,stage,n_ch_,1) = agc_state_.input_accum_.block(0,stage,n_ch_,1) + agc_in; // nothing else to do if it's not the right decim_phase if (decim_phase == 0){ // do lots of work, at decimated rate. // decimated inputs for this stage, and to be decimated more for next: agc_in = agc_state_.input_accum_.block(0,stage,n_ch_,1) / decim; // reset accumulator: agc_state_.input_accum_.block(0,stage,n_ch_,1) = FloatArray::Zero(n_ch_); if (stage < (agc_coeffs_.decimation_.size() - 1)){ // recurse to evaluate next stage(s) updated = AGCRecurse(stage+1, agc_in); // and add its output to this stage input, whether it updated or not: agc_in = agc_in + (agc_coeffs_.agc_stage_gain_ * agc_state_.agc_memory_.block(0,stage+1,n_ch_,1)); } FloatArray agc_stage_state = agc_state_.agc_memory_.block(0,stage,n_ch_,1); // first-order recursive smoothing filter update, in time: agc_stage_state = agc_stage_state + (agc_coeffs_.agc_epsilon_(stage) * (agc_in - agc_stage_state)); agc_stage_state = AGCSpatialSmooth(stage, agc_stage_state); agc_state_.agc_memory_.block(0,stage,n_ch_,1) = agc_stage_state; } else { updated = false; } return updated; } FloatArray Ear::AGCSpatialSmooth(int stage, FloatArray stage_state){ int n_iterations = agc_coeffs_.agc_spatial_iterations_(stage); bool use_fir; if (n_iterations < 4){ use_fir = true; } else { use_fir = false; } if (use_fir) { FloatArray fir_coeffs = agc_coeffs_.agc_spatial_fir_.block(0,stage,3,1); FloatArray ss_tap1(n_ch_); FloatArray ss_tap2(n_ch_); FloatArray ss_tap3(n_ch_); FloatArray ss_tap4(n_ch_); int n_taps = agc_coeffs_.agc_spatial_n_taps_(stage); //Initialize first two taps of stage state, used for both cases ss_tap1(0) = stage_state(0); ss_tap1.block(1,0,n_ch_-1,1) = stage_state.block(0,0,n_ch_-1,1); ss_tap2(n_ch_-1) = stage_state(n_ch_-1); ss_tap2.block(0,0,n_ch_-1,1) = stage_state.block(1,0,n_ch_-1,1); switch (n_taps) { case 3: stage_state = (fir_coeffs(0) * ss_tap1) + (fir_coeffs(1) * stage_state) + (fir_coeffs(2) * ss_tap2); break; case 5: //Initialize last two taps of stage state, used for 5-tap case ss_tap3(0) = stage_state(0); ss_tap3(1) = stage_state(1); ss_tap3.block(2,0,n_ch_-2,1) = stage_state.block(0,0,n_ch_-2,1); ss_tap4(n_ch_-2) = stage_state(n_ch_-1); ss_tap4(n_ch_-1) = stage_state(n_ch_-2); ss_tap4.block(0,0,n_ch_-2,1) = stage_state.block(2,0,n_ch_-2,1); stage_state = (fir_coeffs(0) * (ss_tap3 + ss_tap1)) + (fir_coeffs(1) * stage_state) + (fir_coeffs(2) * (ss_tap2 + ss_tap4)); break; default: //TODO Throw Error std::cout << "Error: bad n-taps in AGCSpatialSmooth" << std::endl; } } else { stage_state = AGCSmoothDoubleExponential(stage_state); } return stage_state; } FloatArray Ear::AGCSmoothDoubleExponential(FloatArray stage_state){ return stage_state; }