Mercurial > hg > aimc
diff carfac/ear.cc @ 609:aefe2ca0674f
First version of a C++ implementation by Alex Brandmeyer
author | alexbrandmeyer |
---|---|
date | Mon, 13 May 2013 22:51:15 +0000 |
parents | |
children | 01986636257a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/carfac/ear.cc Mon May 13 22:51:15 2013 +0000 @@ -0,0 +1,268 @@ +// +// ear.cc +// CARFAC Open Source C++ Library +// +// Created by Alex Brandmeyer on 5/10/13. +// +// This C++ file is part of an implementation of Lyon's cochlear model: +// "Cascade of Asymmetric Resonators with Fast-Acting Compression" +// to supplement Lyon's upcoming book "Human and Machine Hearing" +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "ear.h" + +void Ear::InitEar(long fs, CARParams car_p, IHCParams ihc_p, AGCParams agc_p){ + car_params_ = car_p; + ihc_params_ = ihc_p; + agc_params_ = agc_p; + n_ch_ = 0; + FPType pole_hz = car_params_.first_pole_theta_ * fs / (2 * PI); + while (pole_hz > car_params_.min_pole_hz_) { + n_ch_++; + pole_hz = pole_hz - car_params_.erb_per_step_ * + ERBHz(pole_hz, car_params_.erb_break_freq_, car_params_.erb_q_); + } + FloatArray pole_freqs(n_ch_); + pole_hz = car_params_.first_pole_theta_ * fs / (2 * PI); + for(int ch=0;ch < n_ch_; ch++){ + pole_freqs(ch) = pole_hz; + pole_hz = pole_hz - car_params_.erb_per_step_ * + ERBHz(pole_hz, car_params_.erb_break_freq_, car_params_.erb_q_); + } + max_channels_per_octave_ = log(2) / log(pole_freqs(0) / pole_freqs(1)); + car_coeffs_.DesignFilters(car_params_, fs, &pole_freqs); + agc_coeffs_.DesignAGC(agc_params_, fs, n_ch_); + ihc_coeffs_.DesignIHC(ihc_params_, fs, n_ch_); + car_state_.InitCARState(car_coeffs_); + agc_state_.InitAGCState(agc_coeffs_); + ihc_state_.InitIHCState(ihc_coeffs_); + +} + +FloatArray Ear::CARStep(FPType input){ + FloatArray g(n_ch_); + FloatArray zb(n_ch_); + FloatArray za(n_ch_); + FloatArray v(n_ch_); + FloatArray nlf(n_ch_); + FloatArray r(n_ch_); + FloatArray z1(n_ch_); + FloatArray z2(n_ch_); + FloatArray zy(n_ch_); + FPType in_out; + + // do the DOHC stuff: + g = car_state_.g_memory_ + car_state_.dg_memory_; //interp g + zb = car_state_.zb_memory_ + car_state_.dzb_memory_; //AGC interpolation state + // update the nonlinear function of "velocity", and zA (delay of z2): + za = car_state_.za_memory_; + v = car_state_.z2_memory_ - za; + nlf = OHC_NLF(v); + r = car_coeffs_.r1_coeffs_ + (zb * nlf); // zB * nfl is "undamping" delta r + za = car_state_.z2_memory_; + // now reduce state by r and rotate with the fixed cos/sin coeffs: + z1 = r * ((car_coeffs_.a0_coeffs_ * car_state_.z1_memory_) - + (car_coeffs_.c0_coeffs_ * car_state_.z2_memory_)); + z2 = r * ((car_coeffs_.c0_coeffs_ * car_state_.z1_memory_) + + (car_coeffs_.a0_coeffs_ * car_state_.z2_memory_)); + zy = car_coeffs_.h_coeffs_ * z2; + // Ripple input-output path, instead of parallel, to avoid delay... + // this is the only part that doesn't get computed "in parallel": + in_out = input; + for (int ch = 0; ch < n_ch_; ch++){ + z1(ch) = z1(ch) + in_out; + // ripple, saving final channel outputs in zY + in_out = g(ch) * (in_out + zy(ch)); + zy(ch) = in_out; + } + car_state_.z1_memory_ = z1; + car_state_.z2_memory_ = z2; + car_state_.za_memory_ = za; + car_state_.zb_memory_ = zb; + car_state_.zy_memory_ = zy; + car_state_.g_memory_ = g; + // car_out is equal to zy state; + return zy; +} + +// start with a quadratic nonlinear function, and limit it via a +// rational function; make the result go to zero at high +// absolute velocities, so it will do nothing there. +FloatArray Ear::OHC_NLF(FloatArray velocities){ + FloatArray nlf(n_ch_); + nlf = 1 / ((velocities * car_coeffs_.velocity_scale_) + + (car_coeffs_.v_offset_ * car_coeffs_.v_offset_)); + return nlf; +} + +// One sample-time update of inner-hair-cell (IHC) model, including the +// detection nonlinearity and one or two capacitor state variables. +FloatArray Ear::IHCStep(FloatArray car_out){ + FloatArray ihc_out(n_ch_); + FloatArray ac_diff(n_ch_); + FloatArray conductance(n_ch_); + ac_diff = car_out - ihc_state_.ac_coupler_; + ihc_state_.ac_coupler_ = ihc_state_.ac_coupler_ + + (ihc_coeffs_.ac_coeff_ * ac_diff); + if (ihc_coeffs_.just_hwr_) { + //TODO Figure out best implementation with Eigen max/min methods + for (int ch = 0; ch < n_ch_; ch++){ + FPType a; + if (ac_diff(ch) > 0){ + a = ac_diff(ch); + } else { + a = 0; + } + if (a < 2){ + ihc_out(ch) = a; + } else { + ihc_out(ch) = 2; + } + } + + } else { + conductance = CARFACDetect(ac_diff); + if (ihc_coeffs_.one_cap_) { + ihc_out = conductance * ihc_state_.cap1_voltage_; + ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - + (ihc_out * ihc_coeffs_.out1_rate_) + + ((1 - ihc_state_.cap1_voltage_) + * ihc_coeffs_.in1_rate_); + } else { + ihc_out = conductance * ihc_state_.cap2_voltage_; + ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - + ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) + * ihc_coeffs_.out1_rate_) + + ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_); + ihc_state_.cap2_voltage_ = ihc_state_.cap2_voltage_ - + (ihc_out * ihc_coeffs_.out2_rate_) + + ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) + * ihc_coeffs_.in2_rate_); + } + // smooth it twice with LPF: + ihc_out = ihc_out * ihc_coeffs_.output_gain_; + ihc_state_.lpf1_state_ = ihc_state_.lpf1_state_ + + (ihc_coeffs_.lpf_coeff_ * (ihc_out - ihc_state_.lpf1_state_)); + ihc_state_.lpf2_state_ = ihc_state_.lpf2_state_ + + (ihc_coeffs_.lpf_coeff_ * + (ihc_state_.lpf1_state_ - ihc_state_.lpf2_state_)); + ihc_out = ihc_state_.lpf2_state_ - ihc_coeffs_.rest_output_; + } + ihc_state_.ihc_accum_ += ihc_out; + return ihc_out; +} + +bool Ear::AGCStep(FloatArray ihc_out){ + int stage = 0; + FloatArray agc_in(n_ch_); + agc_in = agc_coeffs_.detect_scale_ * ihc_out; + bool updated = AGCRecurse(stage, agc_in); + return updated; +} + +bool Ear::AGCRecurse(int stage, FloatArray agc_in){ + bool updated = true; + // decim factor for this stage, relative to input or prev. stage: + int decim = agc_coeffs_.decimation_(stage); + // decim phase of this stage (do work on phase 0 only): + //TODO FIX MODULO + + int decim_phase = agc_state_.decim_phase_(stage); + decim_phase = decim_phase % decim; + agc_state_.decim_phase_(stage) = decim_phase; + // accumulate input for this stage from detect or previous stage: + agc_state_.input_accum_.block(0,stage,n_ch_,1) = + agc_state_.input_accum_.block(0,stage,n_ch_,1) + agc_in; + + // nothing else to do if it's not the right decim_phase + if (decim_phase == 0){ + // do lots of work, at decimated rate. + // decimated inputs for this stage, and to be decimated more for next: + agc_in = agc_state_.input_accum_.block(0,stage,n_ch_,1) / decim; + // reset accumulator: + agc_state_.input_accum_.block(0,stage,n_ch_,1) = FloatArray::Zero(n_ch_); + + if (stage < (agc_coeffs_.decimation_.size() - 1)){ + // recurse to evaluate next stage(s) + updated = AGCRecurse(stage+1, agc_in); + // and add its output to this stage input, whether it updated or not: + agc_in = agc_in + (agc_coeffs_.agc_stage_gain_ * + agc_state_.agc_memory_.block(0,stage+1,n_ch_,1)); + } + FloatArray agc_stage_state = agc_state_.agc_memory_.block(0,stage,n_ch_,1); + // first-order recursive smoothing filter update, in time: + agc_stage_state = agc_stage_state + (agc_coeffs_.agc_epsilon_(stage) * + (agc_in - agc_stage_state)); + agc_stage_state = AGCSpatialSmooth(stage, agc_stage_state); + agc_state_.agc_memory_.block(0,stage,n_ch_,1) = agc_stage_state; + } else { + updated = false; + } + return updated; +} + +FloatArray Ear::AGCSpatialSmooth(int stage, FloatArray stage_state){ + int n_iterations = agc_coeffs_.agc_spatial_iterations_(stage); + bool use_fir; + if (n_iterations < 4){ + use_fir = true; + } else { + use_fir = false; + } + + if (use_fir) { + FloatArray fir_coeffs = agc_coeffs_.agc_spatial_fir_.block(0,stage,3,1); + FloatArray ss_tap1(n_ch_); + FloatArray ss_tap2(n_ch_); + FloatArray ss_tap3(n_ch_); + FloatArray ss_tap4(n_ch_); + int n_taps = agc_coeffs_.agc_spatial_n_taps_(stage); + //Initialize first two taps of stage state, used for both cases + ss_tap1(0) = stage_state(0); + ss_tap1.block(1,0,n_ch_-1,1) = stage_state.block(0,0,n_ch_-1,1); + ss_tap2(n_ch_-1) = stage_state(n_ch_-1); + ss_tap2.block(0,0,n_ch_-1,1) = stage_state.block(1,0,n_ch_-1,1); + switch (n_taps) { + case 3: + stage_state = (fir_coeffs(0) * ss_tap1) + + (fir_coeffs(1) * stage_state) + + (fir_coeffs(2) * ss_tap2); + break; + case 5: + //Initialize last two taps of stage state, used for 5-tap case + ss_tap3(0) = stage_state(0); + ss_tap3(1) = stage_state(1); + ss_tap3.block(2,0,n_ch_-2,1) = stage_state.block(0,0,n_ch_-2,1); + ss_tap4(n_ch_-2) = stage_state(n_ch_-1); + ss_tap4(n_ch_-1) = stage_state(n_ch_-2); + ss_tap4.block(0,0,n_ch_-2,1) = stage_state.block(2,0,n_ch_-2,1); + + stage_state = (fir_coeffs(0) * (ss_tap3 + ss_tap1)) + + (fir_coeffs(1) * stage_state) + + (fir_coeffs(2) * (ss_tap2 + ss_tap4)); + break; + default: + //TODO Throw Error + std::cout << "Error: bad n-taps in AGCSpatialSmooth" << std::endl; + } + + } else { + stage_state = AGCSmoothDoubleExponential(stage_state); + } + return stage_state; +} + +FloatArray Ear::AGCSmoothDoubleExponential(FloatArray stage_state){ + return stage_state; +}