Mercurial > hg > aimc
view trunk/carfac/ear.cc @ 672:a9694d0bb55a
Fix scons build of library and test.
Deleted main.cc since libgtest comes with a corresponding main library.
Everything compiles and the tests run on Ubuntu, but the tests all fail.
author | ronw@google.com |
---|---|
date | Thu, 23 May 2013 18:12:22 +0000 |
parents | 443b522fb593 |
children | 7f424c1a8b78 |
line wrap: on
line source
// // ear.cc // CARFAC Open Source C++ Library // // Created by Alex Brandmeyer on 5/10/13. // // This C++ file is part of an implementation of Lyon's cochlear model: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" // to supplement Lyon's upcoming book "Human and Machine Hearing" // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <assert.h> #include "ear.h" // The 'InitEar' function takes a set of model parameters and initializes the // design coefficients and model state variables needed for running the model // on a single audio channel. void Ear::InitEar(const int n_ch, const FPType fs, const FloatArray& pole_freqs, const CARParams& car_params, const IHCParams& ihc_params, const AGCParams& agc_params) { // The first section of code determines the number of channels that will be // used in the model on the basis of the sample rate and the CAR parameters // that have been passed to this function. n_ch_ = n_ch; // These functions use the parameters that have been passed to design the // coefficients for the first two stages of the model. car_coeffs_.Design(car_params, fs, pole_freqs); ihc_coeffs_.Design(ihc_params, fs); // This code initializes the coefficients for each of the AGC stages. agc_coeffs_.resize(agc_params.n_stages_); FPType previous_stage_gain = 0.0; FPType decim = 1.0; for (int stage = 0; stage < agc_params.n_stages_; ++stage) { agc_coeffs_[stage].Design(agc_params, stage, fs, previous_stage_gain, decim); // Two variables store the decimation and gain levels for use in the design // of the subsequent stages. previous_stage_gain = agc_coeffs_[stage].agc_gain_; decim = agc_coeffs_[stage].decim_; } // Once the coefficients have been determined, we can initialize the state // variables that will be used during runtime. InitCARState(); InitIHCState(); InitAGCState(); } void Ear::InitCARState() { car_state_.z1_memory_ = FloatArray::Zero(n_ch_); car_state_.z2_memory_ = FloatArray::Zero(n_ch_); car_state_.za_memory_ = FloatArray::Zero(n_ch_); car_state_.zb_memory_ = car_coeffs_.zr_coeffs_; car_state_.dzb_memory_ = FloatArray::Zero(n_ch_); car_state_.zy_memory_ = FloatArray::Zero(n_ch_); car_state_.g_memory_ = car_coeffs_.g0_coeffs_; car_state_.dg_memory_ = FloatArray::Zero(n_ch_); } void Ear::InitIHCState() { ihc_state_.ihc_accum_ = FloatArray::Zero(n_ch_); if (! ihc_coeffs_.just_hwr_) { ihc_state_.ac_coupler_ = FloatArray::Zero(n_ch_); ihc_state_.lpf1_state_ = ihc_coeffs_.rest_output_ * FloatArray::Ones(n_ch_); ihc_state_.lpf2_state_ = ihc_coeffs_.rest_output_ * FloatArray::Ones(n_ch_); if (ihc_coeffs_.one_cap_) { ihc_state_.cap1_voltage_ = ihc_coeffs_.rest_cap1_ * FloatArray::Ones(n_ch_); } else { ihc_state_.cap1_voltage_ = ihc_coeffs_.rest_cap1_ * FloatArray::Ones(n_ch_); ihc_state_.cap2_voltage_ = ihc_coeffs_.rest_cap2_ * FloatArray::Ones(n_ch_); } } } void Ear::InitAGCState() { int n_agc_stages = agc_coeffs_.size(); agc_state_.resize(n_agc_stages); for (int i = 0; i < n_agc_stages; ++i) { agc_state_[i].decim_phase_ = 0; agc_state_[i].agc_memory_ = FloatArray::Zero(n_ch_); agc_state_[i].input_accum_ = FloatArray::Zero(n_ch_); } } void Ear::CARStep(const FPType input, FloatArray* car_out) { // This interpolates g. car_state_.g_memory_ = car_state_.g_memory_ + car_state_.dg_memory_; // This calculates the AGC interpolation state. car_state_.zb_memory_ = car_state_.zb_memory_ + car_state_.dzb_memory_; // This updates the nonlinear function of 'velocity' along with zA, which is // a delay of z2. FloatArray nonlinear_fun(n_ch_); FloatArray velocities = car_state_.z2_memory_ - car_state_.za_memory_; OHCNonlinearFunction(velocities, &nonlinear_fun); // Here, zb_memory_ * nonlinear_fun is "undamping" delta r. FloatArray r = car_coeffs_.r1_coeffs_ + (car_state_.zb_memory_ * nonlinear_fun); car_state_.za_memory_ = car_state_.z2_memory_; // Here we reduce the CAR state by r and rotate with the fixed cos/sin coeffs. FloatArray z1 = r * ((car_coeffs_.a0_coeffs_ * car_state_.z1_memory_) - (car_coeffs_.c0_coeffs_ * car_state_.z2_memory_)); car_state_.z2_memory_ = r * ((car_coeffs_.c0_coeffs_ * car_state_.z1_memory_) + (car_coeffs_.a0_coeffs_ * car_state_.z2_memory_)); car_state_.zy_memory_ = car_coeffs_.h_coeffs_ * car_state_.z2_memory_; // This section ripples the input-output path, to avoid delay... // It's the only part that doesn't get computed "in parallel": FPType in_out = input; for (int ch = 0; ch < n_ch_; ch++) { z1(ch) = z1(ch) + in_out; // This performs the ripple, and saves the final channel outputs in zy. in_out = car_state_.g_memory_(ch) * (in_out + car_state_.zy_memory_(ch)); car_state_.zy_memory_(ch) = in_out; } car_state_.z1_memory_ = z1; *car_out = car_state_.zy_memory_; } // We start with a quadratic nonlinear function, and limit it via a // rational function. This makes the result go to zero at high // absolute velocities, so it will do nothing there. void Ear::OHCNonlinearFunction(const FloatArray& velocities, FloatArray* nonlinear_fun) { *nonlinear_fun = (1 + ((velocities * car_coeffs_.velocity_scale_) + car_coeffs_.v_offset_).square()).inverse(); } // This step is a one sample-time update of the inner-hair-cell (IHC) model, // including the detection nonlinearity and either one or two capacitor state // variables. void Ear::IHCStep(const FloatArray& car_out, FloatArray* ihc_out) { FloatArray ac_diff = car_out - ihc_state_.ac_coupler_; ihc_state_.ac_coupler_ = ihc_state_.ac_coupler_ + (ihc_coeffs_.ac_coeff_ * ac_diff); if (ihc_coeffs_.just_hwr_) { FloatArray output(n_ch_); for (int ch = 0; ch < n_ch_; ++ch) { FPType a = (ac_diff(ch) > 0.0) ? ac_diff(ch) : 0.0; output(ch) = (a < 2) ? a : 2; } *ihc_out = output; } else { FloatArray conductance = CARFACDetect(ac_diff); if (ihc_coeffs_.one_cap_) { *ihc_out = conductance * ihc_state_.cap1_voltage_; ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - (*ihc_out * ihc_coeffs_.out1_rate_) + ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_); } else { *ihc_out = conductance * ihc_state_.cap2_voltage_; ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) * ihc_coeffs_.out1_rate_) + ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_); ihc_state_.cap2_voltage_ = ihc_state_.cap2_voltage_ - (*ihc_out * ihc_coeffs_.out2_rate_) + ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) * ihc_coeffs_.in2_rate_); } // Here we smooth the output twice using a LPF. *ihc_out *= ihc_coeffs_.output_gain_; ihc_state_.lpf1_state_ = ihc_state_.lpf1_state_ + (ihc_coeffs_.lpf_coeff_ * (*ihc_out - ihc_state_.lpf1_state_)); ihc_state_.lpf2_state_ = ihc_state_.lpf2_state_ + (ihc_coeffs_.lpf_coeff_ * (ihc_state_.lpf1_state_ - ihc_state_.lpf2_state_)); *ihc_out = ihc_state_.lpf2_state_ - ihc_coeffs_.rest_output_; } ihc_state_.ihc_accum_ += *ihc_out; } bool Ear::AGCStep(const FloatArray& ihc_out) { int stage = 0; int n_stages = agc_coeffs_[0].n_agc_stages_; FPType detect_scale = agc_coeffs_[n_stages - 1].detect_scale_; bool updated = AGCRecurse(stage, detect_scale * ihc_out); return updated; } bool Ear::AGCRecurse(const int stage, FloatArray agc_in) { bool updated = true; // This is the decim factor for this stage, relative to input or prev. stage: int decim = agc_coeffs_[stage].decimation_; // This is the decim phase of this stage (do work on phase 0 only): int decim_phase = agc_state_[stage].decim_phase_ + 1; decim_phase = decim_phase % decim; agc_state_[stage].decim_phase_ = decim_phase; // Here we accumulate input for this stage from the previous stage: agc_state_[stage].input_accum_ += agc_in; // We don't do anything if it's not the right decim_phase. if (decim_phase == 0) { // Now we do lots of work, at the decimated rate. // These are the decimated inputs for this stage, which will be further // decimated at the next stage. agc_in = agc_state_[stage].input_accum_ / decim; // This resets the accumulator. agc_state_[stage].input_accum_ = FloatArray::Zero(n_ch_); if (stage < (agc_coeffs_.size() - 1)) { // Now we recurse to evaluate the next stage(s). // TODO (alexbrandmeyer): the Matlab version of AGCRecurse can return a // value for updated, but isn't used in that version. Check with Dick to // see if that is needed. updated = AGCRecurse(stage + 1, agc_in); // Afterwards we add its output to this stage input, whether it updated or // not. agc_in += agc_coeffs_[stage].agc_stage_gain_ * agc_state_[stage + 1].agc_memory_; } FloatArray agc_stage_state = agc_state_[stage].agc_memory_; // This performs a first-order recursive smoothing filter update, in time. agc_stage_state += agc_coeffs_[stage].agc_epsilon_ * (agc_in - agc_stage_state); agc_stage_state = AGCSpatialSmooth(stage, agc_stage_state); agc_state_[stage].agc_memory_ = agc_stage_state; updated = true; } else { updated = false; } return updated; } // TODO (alexbrandmeyer): figure out how to operate directly on stage_state. // Using a pointer breaks the () indexing of the Eigen arrays, but there must // be a way around this. FloatArray Ear::AGCSpatialSmooth(const int stage, FloatArray stage_state) { int n_iterations = agc_coeffs_[stage].agc_spatial_iterations_; bool use_fir; use_fir = (n_iterations < 4) ? true : false; if (use_fir) { std::vector<FPType> fir_coeffs = agc_coeffs_[stage].agc_spatial_fir_; FloatArray ss_tap1(n_ch_); FloatArray ss_tap2(n_ch_); FloatArray ss_tap3(n_ch_); FloatArray ss_tap4(n_ch_); int n_taps = agc_coeffs_[stage].agc_spatial_n_taps_; // This initializes the first two taps of stage state, which are used for // both possible cases. ss_tap1(0) = stage_state(0); ss_tap1.block(1, 0, n_ch_ - 1, 1) = stage_state.block(0, 0, n_ch_ - 1, 1); ss_tap2(n_ch_ - 1) = stage_state(n_ch_ - 1); ss_tap2.block(0, 0, n_ch_ - 1, 1) = stage_state.block(1, 0, n_ch_ - 1, 1); switch (n_taps) { case 3: stage_state = (fir_coeffs[0] * ss_tap1) + (fir_coeffs[1] * stage_state) + (fir_coeffs[2] * ss_tap2); break; case 5: // Now we initialize last two taps of stage state, which are only used // for the 5-tap case. ss_tap3(0) = stage_state(0); ss_tap3(1) = stage_state(1); ss_tap3.block(2, 0, n_ch_ - 2, 1) = stage_state.block(0, 0, n_ch_ - 2, 1); ss_tap4(n_ch_ - 2) = stage_state(n_ch_ - 1); ss_tap4(n_ch_ - 1) = stage_state(n_ch_ - 2); ss_tap4.block(0, 0, n_ch_ - 2, 1) = stage_state.block(2, 0, n_ch_ - 2, 1); stage_state = (fir_coeffs[0] * (ss_tap3 + ss_tap1)) + (fir_coeffs[1] * stage_state) + (fir_coeffs[2] * (ss_tap2 + ss_tap4)); break; default: assert(true && "Bad n_taps in AGCSpatialSmooth; should be 3 or 5."); break; } } else { stage_state = AGCSmoothDoubleExponential(stage_state, agc_coeffs_[stage].agc_pole_z1_, agc_coeffs_[stage].agc_pole_z2_); } return stage_state; } // TODO (alexbrandmeyer): figure out how to operate directly on stage_state. // Same point as above for AGCSpatialSmooth. FloatArray Ear::AGCSmoothDoubleExponential(FloatArray stage_state, const FPType pole_z1, const FPType pole_z2) { int32_t n_pts = stage_state.size(); FPType input; FPType state = 0.0; // TODO (alexbrandmeyer): I'm assuming one dimensional input for now, but this // should be verified with Dick for the final version for (int i = n_pts - 11; i < n_pts; ++i){ input = stage_state(i); state = state + (1 - pole_z1) * (input - state); } for (int i = n_pts - 1; i > -1; --i){ input = stage_state(i); state = state + (1 - pole_z2) * (input - state); } for (int i = 0; i < n_pts; ++i){ input = stage_state(i); state = state + (1 - pole_z1) * (input - state); stage_state(i) = state; } return stage_state; } FloatArray Ear::StageGValue(const FloatArray& undamping) { FloatArray r = car_coeffs_.r1_coeffs_ + car_coeffs_.zr_coeffs_ * undamping; return (1 - 2 * r * car_coeffs_.a0_coeffs_ + (r * r)) / (1 - 2 * r * car_coeffs_.a0_coeffs_ + car_coeffs_.h_coeffs_ * r * car_coeffs_.c0_coeffs_ + (r * r)); }