Mercurial > hg > aimc
view trunk/carfac/ear.cc @ 678:7f424c1a8b78
Fifth revision of Alex Brandmeyer's C++ implementation of CARFAC. Moved output structure to deque<vector<FloatArray>, moved coefficient Design methods to CARFAC object, moved tests into carfac_test.cc. Verified binaural output against Matlab using two tests. Added CARFAC_Compare_CPP_Test_Data to plot NAP output of C++ version against Matlab version. Verified build and test success on OS X using SCons with g++ 4.7 (std=c++11).
author | alexbrandmeyer |
---|---|
date | Mon, 27 May 2013 16:36:54 +0000 |
parents | 443b522fb593 |
children | 594b410c2aed |
line wrap: on
line source
// // ear.cc // CARFAC Open Source C++ Library // // Created by Alex Brandmeyer on 5/10/13. // // This C++ file is part of an implementation of Lyon's cochlear model: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" // to supplement Lyon's upcoming book "Human and Machine Hearing" // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <assert.h> #include "ear.h" // The 'InitEar' function takes a set of model parameters and initializes the // design coefficients and model state variables needed for running the model // on a single audio channel. void Ear::DesignEar(const int n_ch, const FPType fs, const CARCoeffs& car_coeffs, const IHCCoeffs& ihc_coeffs, const std::vector<AGCCoeffs>& agc_coeffs) { // The first section of code determines the number of channels that will be // used in the model on the basis of the sample rate and the CAR parameters // that have been passed to this function. n_ch_ = n_ch; car_coeffs_ = car_coeffs; ihc_coeffs_ = ihc_coeffs; agc_coeffs_ = agc_coeffs; // Once the coefficients have been determined, we can initialize the state // variables that will be used during runtime. InitCARState(); InitIHCState(); InitAGCState(); } void Ear::InitCARState() { car_state_.z1_memory_.setZero(n_ch_); car_state_.z2_memory_.setZero(n_ch_); car_state_.za_memory_.setZero(n_ch_); car_state_.zb_memory_ = car_coeffs_.zr_coeffs_; car_state_.dzb_memory_.setZero(n_ch_); car_state_.zy_memory_.setZero(n_ch_); car_state_.g_memory_ = car_coeffs_.g0_coeffs_; car_state_.dg_memory_.setZero(n_ch_); } void Ear::InitIHCState() { ihc_state_.ihc_accum_ = FloatArray::Zero(n_ch_); if (! ihc_coeffs_.just_half_wave_rectify_) { ihc_state_.ac_coupler_.setZero(n_ch_); ihc_state_.lpf1_state_.setConstant(n_ch_, ihc_coeffs_.rest_output_); ihc_state_.lpf2_state_.setConstant(n_ch_, ihc_coeffs_.rest_output_); if (ihc_coeffs_.one_capacitor_) { ihc_state_.cap1_voltage_.setConstant(n_ch_, ihc_coeffs_.rest_cap1_); } else { ihc_state_.cap1_voltage_.setConstant(n_ch_, ihc_coeffs_.rest_cap1_); ihc_state_.cap2_voltage_.setConstant(n_ch_, ihc_coeffs_.rest_cap2_); } } } void Ear::InitAGCState() { int n_agc_stages = agc_coeffs_.size(); agc_state_.resize(n_agc_stages); for (auto& stage_state : agc_state_) { stage_state.decim_phase_ = 0; stage_state.agc_memory_.setZero(n_ch_); stage_state.input_accum_.setZero(n_ch_); } } void Ear::CARStep(const FPType input, FloatArray* car_out) { // This interpolates g. car_state_.g_memory_ = car_state_.g_memory_ + car_state_.dg_memory_; // This calculates the AGC interpolation state. car_state_.zb_memory_ = car_state_.zb_memory_ + car_state_.dzb_memory_; // This updates the nonlinear function of 'velocity' along with zA, which is // a delay of z2. FloatArray nonlinear_fun(n_ch_); FloatArray velocities = car_state_.z2_memory_ - car_state_.za_memory_; OHCNonlinearFunction(velocities, &nonlinear_fun); // Here, zb_memory_ * nonlinear_fun is "undamping" delta r. FloatArray r = car_coeffs_.r1_coeffs_ + (car_state_.zb_memory_ * nonlinear_fun); car_state_.za_memory_ = car_state_.z2_memory_; // Here we reduce the CAR state by r and rotate with the fixed cos/sin coeffs. FloatArray z1 = r * ((car_coeffs_.a0_coeffs_ * car_state_.z1_memory_) - (car_coeffs_.c0_coeffs_ * car_state_.z2_memory_)); car_state_.z2_memory_ = r * ((car_coeffs_.c0_coeffs_ * car_state_.z1_memory_) + (car_coeffs_.a0_coeffs_ * car_state_.z2_memory_)); car_state_.zy_memory_ = car_coeffs_.h_coeffs_ * car_state_.z2_memory_; // This section ripples the input-output path, to avoid delay... // It's the only part that doesn't get computed "in parallel": FPType in_out = input; for (int ch = 0; ch < n_ch_; ch++) { z1(ch) = z1(ch) + in_out; // This performs the ripple, and saves the final channel outputs in zy. in_out = car_state_.g_memory_(ch) * (in_out + car_state_.zy_memory_(ch)); car_state_.zy_memory_(ch) = in_out; } car_state_.z1_memory_ = z1; *car_out = car_state_.zy_memory_; } // We start with a quadratic nonlinear function, and limit it via a // rational function. This makes the result go to zero at high // absolute velocities, so it will do nothing there. void Ear::OHCNonlinearFunction(const FloatArray& velocities, FloatArray* nonlinear_fun) { *nonlinear_fun = (1 + ((velocities * car_coeffs_.velocity_scale_) + car_coeffs_.v_offset_).square()).inverse(); } // This step is a one sample-time update of the inner-hair-cell (IHC) model, // including the detection nonlinearity and either one or two capacitor state // variables. void Ear::IHCStep(const FloatArray& car_out, FloatArray* ihc_out) { FloatArray ac_diff = car_out - ihc_state_.ac_coupler_; ihc_state_.ac_coupler_ = ihc_state_.ac_coupler_ + (ihc_coeffs_.ac_coeff_ * ac_diff); if (ihc_coeffs_.just_half_wave_rectify_) { FloatArray output(n_ch_); for (int ch = 0; ch < n_ch_; ++ch) { FPType a = (ac_diff(ch) > 0.0) ? ac_diff(ch) : 0.0; output(ch) = (a < 2) ? a : 2; } *ihc_out = output; } else { FloatArray conductance = CARFACDetect(ac_diff); if (ihc_coeffs_.one_capacitor_) { *ihc_out = conductance * ihc_state_.cap1_voltage_; ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - (*ihc_out * ihc_coeffs_.out1_rate_) + ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_); } else { *ihc_out = conductance * ihc_state_.cap2_voltage_; ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ - ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) * ihc_coeffs_.out1_rate_) + ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_); ihc_state_.cap2_voltage_ = ihc_state_.cap2_voltage_ - (*ihc_out * ihc_coeffs_.out2_rate_) + ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_) * ihc_coeffs_.in2_rate_); } // Here we smooth the output twice using a LPF. *ihc_out *= ihc_coeffs_.output_gain_; ihc_state_.lpf1_state_ += ihc_coeffs_.lpf_coeff_ * (*ihc_out - ihc_state_.lpf1_state_); ihc_state_.lpf2_state_ += ihc_coeffs_.lpf_coeff_ * (ihc_state_.lpf1_state_ - ihc_state_.lpf2_state_); *ihc_out = ihc_state_.lpf2_state_ - ihc_coeffs_.rest_output_; } ihc_state_.ihc_out_ = *ihc_out; ihc_state_.ihc_accum_ += *ihc_out; } bool Ear::AGCStep(const FloatArray& ihc_out) { int stage = 0; int n_stages = agc_coeffs_[0].n_agc_stages_; FPType detect_scale = agc_coeffs_[n_stages - 1].detect_scale_; bool updated = AGCRecurse(stage, detect_scale * ihc_out); return updated; } bool Ear::AGCRecurse(const int stage, FloatArray agc_in) { bool updated = true; const auto& agc_coeffs = agc_coeffs_[stage]; auto& agc_state = agc_state_[stage]; // This is the decim factor for this stage, relative to input or prev. stage: int decim = agc_coeffs.decimation_; // This is the decim phase of this stage (do work on phase 0 only): int decim_phase = agc_state.decim_phase_ + 1; decim_phase = decim_phase % decim; agc_state.decim_phase_ = decim_phase; // Here we accumulate input for this stage from the previous stage: agc_state.input_accum_ += agc_in; // We don't do anything if it's not the right decim_phase. if (decim_phase == 0) { // Now we do lots of work, at the decimated rate. // These are the decimated inputs for this stage, which will be further // decimated at the next stage. agc_in = agc_state.input_accum_ / decim; // This resets the accumulator. agc_state.input_accum_ = FloatArray::Zero(n_ch_); if (stage < (agc_coeffs_.size() - 1)) { // Now we recurse to evaluate the next stage(s). updated = AGCRecurse(stage + 1, agc_in); // Afterwards we add its output to this stage input, whether it updated or // not. agc_in += agc_coeffs.agc_stage_gain_ * agc_state_[stage + 1].agc_memory_; } FloatArray agc_stage_state = agc_state.agc_memory_; // This performs a first-order recursive smoothing filter update, in time. agc_stage_state += agc_coeffs.agc_epsilon_ * (agc_in - agc_stage_state); agc_stage_state = AGCSpatialSmooth(stage, agc_stage_state); agc_state.agc_memory_ = agc_stage_state; updated = true; } else { updated = false; } return updated; } // TODO (alexbrandmeyer): figure out how to operate directly on stage_state. // Using a pointer breaks the () indexing of the Eigen arrays, but there must // be a way around this. FloatArray Ear::AGCSpatialSmooth(const int stage, FloatArray stage_state) { int n_iterations = agc_coeffs_[stage].agc_spatial_iterations_; bool use_fir; use_fir = (n_iterations < 4) ? true : false; if (use_fir) { FPType fir_coeffs_left = agc_coeffs_[stage].agc_spatial_fir_left_; FPType fir_coeffs_mid = agc_coeffs_[stage].agc_spatial_fir_mid_; FPType fir_coeffs_right = agc_coeffs_[stage].agc_spatial_fir_right_; FloatArray ss_tap1(n_ch_); FloatArray ss_tap2(n_ch_); FloatArray ss_tap3(n_ch_); FloatArray ss_tap4(n_ch_); int n_taps = agc_coeffs_[stage].agc_spatial_n_taps_; // This initializes the first two taps of stage state, which are used for // both possible cases. ss_tap1(0) = stage_state(0); ss_tap1.block(1, 0, n_ch_ - 1, 1) = stage_state.block(0, 0, n_ch_ - 1, 1); ss_tap2(n_ch_ - 1) = stage_state(n_ch_ - 1); ss_tap2.block(0, 0, n_ch_ - 1, 1) = stage_state.block(1, 0, n_ch_ - 1, 1); switch (n_taps) { case 3: stage_state = (fir_coeffs_left * ss_tap1) + (fir_coeffs_mid * stage_state) + (fir_coeffs_right * ss_tap2); break; case 5: // Now we initialize last two taps of stage state, which are only used // for the 5-tap case. ss_tap3(0) = stage_state(0); ss_tap3(1) = stage_state(1); ss_tap3.block(2, 0, n_ch_ - 2, 1) = stage_state.block(0, 0, n_ch_ - 2, 1); ss_tap4(n_ch_ - 2) = stage_state(n_ch_ - 1); ss_tap4(n_ch_ - 1) = stage_state(n_ch_ - 2); ss_tap4.block(0, 0, n_ch_ - 2, 1) = stage_state.block(2, 0, n_ch_ - 2, 1); stage_state = (fir_coeffs_left * (ss_tap3 + ss_tap1)) + (fir_coeffs_mid * stage_state) + (fir_coeffs_right * (ss_tap2 + ss_tap4)); break; default: assert(true && "Bad n_taps in AGCSpatialSmooth; should be 3 or 5."); break; } } else { stage_state = AGCSmoothDoubleExponential(stage_state, agc_coeffs_[stage].agc_pole_z1_, agc_coeffs_[stage].agc_pole_z2_); } return stage_state; } // TODO (alexbrandmeyer): figure out how to operate directly on stage_state. // Same point as above for AGCSpatialSmooth. FloatArray Ear::AGCSmoothDoubleExponential(FloatArray stage_state, const FPType pole_z1, const FPType pole_z2) { int32_t n_pts = stage_state.size(); FPType input; FPType state = 0.0; // TODO (alexbrandmeyer): I'm assuming one dimensional input for now, but this // should be verified with Dick for the final version for (int i = n_pts - 11; i < n_pts; ++i){ input = stage_state(i); state = state + (1 - pole_z1) * (input - state); } for (int i = n_pts - 1; i > -1; --i){ input = stage_state(i); state = state + (1 - pole_z2) * (input - state); } for (int i = 0; i < n_pts; ++i){ input = stage_state(i); state = state + (1 - pole_z1) * (input - state); stage_state(i) = state; } return stage_state; } FloatArray Ear::StageGValue(const FloatArray& undamping) { FloatArray r = car_coeffs_.r1_coeffs_ + car_coeffs_.zr_coeffs_ * undamping; return (1 - 2 * r * car_coeffs_.a0_coeffs_ + (r * r)) / (1 - 2 * r * car_coeffs_.a0_coeffs_ + car_coeffs_.h_coeffs_ * r * car_coeffs_.c0_coeffs_ + (r * r)); }