Mercurial > hg > aimc
diff src/Modules/BMM/ModulePZFC.cc @ 0:582cbe817f2c
- Initial add of support code and modules. Not everything is working yet.
author | tomwalters |
---|---|
date | Fri, 12 Feb 2010 12:31:23 +0000 |
parents | |
children | decdac21cfc2 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Modules/BMM/ModulePZFC.cc Fri Feb 12 12:31:23 2010 +0000 @@ -0,0 +1,453 @@ +// Copyright 2008-2010, Thomas Walters +// +// AIM-C: A C++ implementation of the Auditory Image Model +// http://www.acousticscale.org/AIMC +// +// This program is free software: you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU General Public License +// along with this program. If not, see <http://www.gnu.org/licenses/>. + +/*! \file + * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C + * module by Tom Walters from the AIM-MAT module based on Dick Lyon's code + */ + +/*! \author Thomas Walters <tom@acousticscale.org> + * \date created 2008/02/05 + * \version \$Id: ModulePZFC.cc 4 2010-02-03 18:44:58Z tcw $ + */ + +#include "Support/ERBTools.h" + +#include "Modules/BMM/ModulePZFC.h" + +namespace aimc { +ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) { + module_identifier_ = "pzfc"; + module_type_ = "bmm"; + module_description_ = "Pole-Zero Filter Cascade"; + module_version_ = "$Id: ModulePZFC.cc 4 2010-02-03 18:44:58Z tcw $"; + + // Get parameter values, setting default values where necessary + // Each parameter is set here only if it has not already been set elsewhere. + cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f); + cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f); + pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f); + zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f); + zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f); + step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f); + bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf", + 0.11f); + min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz", + 27.0f); + agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f); + do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true); + + detect_.resize(0); +} + +ModulePZFC::~ModulePZFC() { +} + +bool ModulePZFC::InitializeInternal(const SignalBank &input) { + // Make local convenience copies of some variables + sample_rate_ = input.sample_rate(); + buffer_length_ = input.buffer_length(); + channel_count_ = 0; + + // Prepare the coefficients and also the output SignalBank + if (!SetPZBankCoeffs()) + return false; + + // The output signal bank should be set up by now. + if (!output_.initialized()) + return false; + + // This initialises all buffers which can be modified by Process() + Reset(); + + return true; +} + +void ModulePZFC::Reset() { + // These buffers may be actively modified by the algorithm + agc_state_.clear(); + agc_state_.resize(channel_count_); + for (int i = 0; i < channel_count_; ++i) { + agc_state_[i].clear(); + agc_state_[i].resize(agc_stage_count_, 0.0f); + } + + state_1_.clear(); + state_1_.resize(channel_count_, 0.0f); + + state_2_.clear(); + state_2_.resize(channel_count_, 0.0f); + + previous_out_.clear(); + previous_out_.resize(channel_count_, 0.0f); + + pole_damps_mod_.clear(); + pole_damps_mod_.resize(channel_count_, 0.0f); + + inputs_.clear(); + inputs_.resize(channel_count_, 0.0f); + + // Init AGC + AGCDampStep(); + // pole_damps_mod_ and agc_state_ are now be initialized + + // Modify the pole dampings and AGC state slightly from their values in + // silence in case the input is abuptly loud. + for (int i = 0; i < channel_count_; ++i) { + pole_damps_mod_[i] += 0.05f; + for (int j = 0; j < agc_stage_count_; ++j) + agc_state_[i][j] += 0.05f; + } + + last_input_ = 0.0f; +} + +bool ModulePZFC::SetPZBankCoeffsERBFitted() { + float parameter_values[3 * 7] = { + // Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec + 1.14827, 0.00000, 0.00000, // % SumSqrErr= 10125.41 + 0.53571, -0.70128, 0.63246, // % RMSErr = 2.81586 + 0.76779, 0.00000, 0.00000, // % MeanErr = 0.00000 + // Inf 0.00000 0.00000 % RMSCost = NaN + 0.00000, 0.00000, 0.00000, + 6.00000, 0.00000, 0.00000, + 1.08869, -0.09470, 0.07844, + 10.56432, 2.52732, 1.86895 + // -3.45865 -1.31457 3.91779 % Kv + }; + + // Precalculate the number of channels required - this method is ugly but it + // was the quickest way of converting from MATLAB as the step factor between + // channels can vary quadratically with pole frequency... + + // Normalised maximum pole frequency + float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); + + channel_count_ = 0; + while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) { + float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; + float f_dep = ERBTools::Freq2ERB(frequency) + / ERBTools::Freq2ERB(1000.0f) - 1.0f; + float bw = ERBTools::Freq2ERBw(pole_frequency + / (2.0f * M_PI) * sample_rate_); + float step_factor = 1.0f + / (parameter_values[4*3] + parameter_values[4 * 3 + 1] + * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep); // 1/n2 + pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_); + channel_count_++; + } + + // Now the number of channels is known, various buffers for the filterbank + // coefficients can be initialised + pole_dampings_.clear(); + pole_dampings_.resize(channel_count_, 0.0f); + pole_frequencies_.clear(); + pole_frequencies_.resize(channel_count_, 0.0f); + + // Direct-form coefficients + za0_.clear(); + za0_.resize(channel_count_, 0.0f); + za1_.clear(); + za1_.resize(channel_count_, 0.0f); + za2_.clear(); + za2_.resize(channel_count_, 0.0f); + + // The output signal bank + output_.Initialize(channel_count_, buffer_length_, sample_rate_); + + // Reset the pole frequency to maximum + pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); + + for (int i = channel_count_ - 1; i > -1; --i) { + // Store the normalised pole frequncy + pole_frequencies_[i] = pole_frequency; + + // Calculate the real pole frequency from the normalised pole frequency + float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; + + // Store the real pole frequency as the 'centre frequency' of the filterbank + // channel + output_.set_centre_frequency(i, frequency); + + // From PZFC_Small_Signal_Params.m { From PZFC_Params.m { + float DpndF = ERBTools::Freq2ERB(frequency) + / ERBTools::Freq2ERB(1000.0f) - 1.0f; + + float p[8]; // Parameters (short name for ease of reading) + + // Use parameter_values to recover the parameter values for this frequency + for (int param = 0; param < 7; ++param) + p[param] = parameter_values[param * 3] + + parameter_values[param * 3 + 1] * DpndF + + parameter_values[param * 3 + 2] * DpndF * DpndF; + + // Calculate the final parameter + p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f); + if (p[7] < 0.2f) + p[7] = 0.2f; + + // Nominal bandwidth at this frequency + float fERBw = ERBTools::Freq2ERBw(frequency); + + // Pole bandwidth + float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2) + * pow(p[4], 0.5f); + + // Pole damping + float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2)); + + // Store the pole damping + pole_dampings_[i] = pole_damping; + + // Zero bandwidth + float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2) + * pow(p[4], 0.5f); + + // Zero frequency + float zero_frequency = p[5] * pole_frequency; + + if (zero_frequency > M_PI) + LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency " + "in ModulePZFC(), continuing anyway but results may not " + "be accurate.")); + + // Zero damping + float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2)); + + // Impulse-invariance mapping + float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2)); + float fZRho = exp(-fZDamp * zero_frequency); + + // Direct-form coefficients + float fA1 = -2.0f * fZRho * cos(fZTheta); + float fA2 = fZRho * fZRho; + + // Normalised to unity gain at DC + float fASum = 1.0f + fA1 + fA2; + za0_[i] = 1.0f / fASum; + za1_[i] = fA1 / fASum; + za2_[i] = fA2 / fASum; + + // Subtract step factor (1/n2) times current bandwidth from the pole + // frequency + pole_frequency -= ((1.0f / p[4]) + * (fERBw * (2.0f * M_PI) / sample_rate_)); + } +return true; +} + +bool ModulePZFC::SetPZBankCoeffs() { + /*! \todo Re-implement the alternative parameter settings + */ + if (!SetPZBankCoeffsERBFitted()) + return false; + + /*! \todo Make fMindamp and fMaxdamp user-settable? + */ + mindamp_ = 0.18f; + maxdamp_ = 0.4f; + + rmin_.resize(channel_count_); + rmax_.resize(channel_count_); + xmin_.resize(channel_count_); + xmax_.resize(channel_count_); + + for (int c = 0; c < channel_count_; ++c) { + // Calculate maximum and minimum damping options + rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]); + rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]); + + xmin_[c] = rmin_[c] * cos(pole_frequencies_[c] + * pow((1-pow(mindamp_, 2)), 0.5f)); + xmax_[c] = rmax_[c] * cos(pole_frequencies_[c] + * pow((1-pow(maxdamp_, 2)), 0.5f)); + } + + // Set up AGC parameters + agc_stage_count_ = 4; + agc_epsilons_.resize(agc_stage_count_); + agc_epsilons_[0] = 0.0064f; + agc_epsilons_[1] = 0.0016f; + agc_epsilons_[2] = 0.0004f; + agc_epsilons_[3] = 0.0001f; + + agc_gains_.resize(agc_stage_count_); + agc_gains_[0] = 1.0f; + agc_gains_[1] = 1.4f; + agc_gains_[2] = 2.0f; + agc_gains_[3] = 2.8f; + + float mean_agc_gain = 0.0f; + for (int c = 0; c < agc_stage_count_; ++c) + mean_agc_gain += agc_gains_[c]; + mean_agc_gain /= static_cast<float>(agc_stage_count_); + + for (int c = 0; c < agc_stage_count_; ++c) + agc_gains_[c] /= mean_agc_gain; + + return true; +} + +void ModulePZFC::AGCDampStep() { + if (detect_.size() == 0) { + // If detect_ is not initialised, it means that the AGC is not set up. + // Set up now. + /*! \todo Make a separate InitAGC function which does this. + */ + detect_.resize(channel_count_); + for (int c = 0; c < channel_count_; ++c) + detect_[c] = 1.0f; + + float fDetectZero = DetectFun(0.0f); + for (int c = 0; c < channel_count_; c++) + detect_[c] *= fDetectZero; + + for (int c = 0; c < channel_count_; c++) + for (int st = 0; st < agc_stage_count_; st++) + agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]); + } + + float fAGCEpsLeft = 0.3f; + float fAGCEpsRight = 0.3f; + + for (int c = channel_count_ - 1; c > -1; --c) { + for (int st = 0; st < agc_stage_count_; ++st) { + // This bounds checking is ugly and wasteful, and in an inner loop. + // If this algorithm is slow, this is why! + /*! \todo Proper non-ugly bounds checking in AGCDampStep() + */ + float fPrevAGCState; + float fCurrAGCState; + float fNextAGCState; + + if (c < channel_count_ - 1) + fPrevAGCState = agc_state_[c + 1][st]; + else + fPrevAGCState = agc_state_[c][st]; + + fCurrAGCState = agc_state_[c][st]; + + if (c > 0) + fNextAGCState = agc_state_[c - 1][st]; + else + fNextAGCState = agc_state_[c][st]; + + // Spatial smoothing + /*! \todo Something odd is going on here + * I think this line is not quite right. + */ + float agc_avg = fAGCEpsLeft * fPrevAGCState + + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState + + fAGCEpsRight * fNextAGCState; + // Temporal smoothing + agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st]) + + agc_epsilons_[st] * detect_[c] * agc_gains_[st]; + } + } + + float fOffset = 1.0f - agc_factor_ * DetectFun(0.0f); + + for (int i = 0; i < channel_count_; ++i) { + float fAGCStateMean = 0.0f; + for (int j = 0; j < agc_stage_count_; ++j) + fAGCStateMean += agc_state_[i][j]; + + fAGCStateMean /= static_cast<float>(agc_stage_count_); + + pole_damps_mod_[i] = pole_dampings_[i] * + (fOffset + agc_factor_ * fAGCStateMean); + } +} + +float ModulePZFC::DetectFun(float fIN) { + if (fIN < 0.0f) + fIN = 0.0f; + float fDetect = Minimum(1.0f, fIN); + float fA = 0.25f; + return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f); +} + +inline float ModulePZFC::Minimum(float a, float b) { + if (a < b) + return a; + else + return b; +} + +void ModulePZFC::Process(const SignalBank& input) { + // Set the start time of the output buffer + output_.set_start_time(input.start_time()); + + for (int iSample = 0; iSample < input.buffer_length(); ++iSample) { + float fInput = input[0][iSample]; + + // Lowpass filter the input with a zero at PI + fInput = 0.5f * fInput + 0.5f * last_input_; + last_input_ = input[0][iSample]; + + inputs_[channel_count_ - 1] = fInput; + for (int c = 0; c < channel_count_ - 1; ++c) + inputs_[c] = previous_out_[c + 1]; + + // PZBankStep2 + // to save a bunch of divides + float damp_rate = 1.0f / (maxdamp_ - mindamp_); + + for (int c = channel_count_ - 1; c > -1; --c) { + float interp_factor = (pole_damps_mod_[c] + - mindamp_) * damp_rate; + + float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor; + float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor; + + // optional improvement to constellation adds a bit to r + float fd = pole_frequencies_[c] * pole_damps_mod_[c]; + // quadratic for small values, then linear + r = r + 0.25f * fd * Minimum(0.05f, fd); + + float zb1 = -2.0f * x; + float zb2 = r * r; + + /* canonic poles but with input provided where unity DC gain is assured + * (mean value of state is always equal to mean value of input) + */ + float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1 + - (state_2_[c] - inputs_[c]) * zb2; + + // canonic zeros part as before: + float output = za0_[c] * new_state + za1_[c] * state_1_[c] + + za2_[c] * state_2_[c]; + + // cubic compression nonlinearity + output = output - 0.0001f * pow(output, 3); + + output_.set_sample(c, iSample, output); + detect_[c] = DetectFun(output); + state_2_[c] = state_1_[c]; + state_1_[c] = new_state; + } + + if (do_agc_step_) + AGCDampStep(); + + for (int c = 0; c < channel_count_; ++c) + previous_out_[c] = output_[c][iSample]; + } + PushOutput(); +} +} // namespace aimc