Mercurial > hg > aimc
comparison src/Modules/BMM/ModulePZFC.cc @ 0:582cbe817f2c
- Initial add of support code and modules. Not everything is working yet.
| author | tomwalters |
|---|---|
| date | Fri, 12 Feb 2010 12:31:23 +0000 |
| parents | |
| children | decdac21cfc2 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:582cbe817f2c |
|---|---|
| 1 // Copyright 2008-2010, Thomas Walters | |
| 2 // | |
| 3 // AIM-C: A C++ implementation of the Auditory Image Model | |
| 4 // http://www.acousticscale.org/AIMC | |
| 5 // | |
| 6 // This program is free software: you can redistribute it and/or modify | |
| 7 // it under the terms of the GNU General Public License as published by | |
| 8 // the Free Software Foundation, either version 3 of the License, or | |
| 9 // (at your option) any later version. | |
| 10 // | |
| 11 // This program is distributed in the hope that it will be useful, | |
| 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 14 // GNU General Public License for more details. | |
| 15 // | |
| 16 // You should have received a copy of the GNU General Public License | |
| 17 // along with this program. If not, see <http://www.gnu.org/licenses/>. | |
| 18 | |
| 19 /*! \file | |
| 20 * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C | |
| 21 * module by Tom Walters from the AIM-MAT module based on Dick Lyon's code | |
| 22 */ | |
| 23 | |
| 24 /*! \author Thomas Walters <tom@acousticscale.org> | |
| 25 * \date created 2008/02/05 | |
| 26 * \version \$Id: ModulePZFC.cc 4 2010-02-03 18:44:58Z tcw $ | |
| 27 */ | |
| 28 | |
| 29 #include "Support/ERBTools.h" | |
| 30 | |
| 31 #include "Modules/BMM/ModulePZFC.h" | |
| 32 | |
| 33 namespace aimc { | |
| 34 ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) { | |
| 35 module_identifier_ = "pzfc"; | |
| 36 module_type_ = "bmm"; | |
| 37 module_description_ = "Pole-Zero Filter Cascade"; | |
| 38 module_version_ = "$Id: ModulePZFC.cc 4 2010-02-03 18:44:58Z tcw $"; | |
| 39 | |
| 40 // Get parameter values, setting default values where necessary | |
| 41 // Each parameter is set here only if it has not already been set elsewhere. | |
| 42 cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f); | |
| 43 cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f); | |
| 44 pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f); | |
| 45 zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f); | |
| 46 zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f); | |
| 47 step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f); | |
| 48 bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf", | |
| 49 0.11f); | |
| 50 min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz", | |
| 51 27.0f); | |
| 52 agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f); | |
| 53 do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true); | |
| 54 | |
| 55 detect_.resize(0); | |
| 56 } | |
| 57 | |
| 58 ModulePZFC::~ModulePZFC() { | |
| 59 } | |
| 60 | |
| 61 bool ModulePZFC::InitializeInternal(const SignalBank &input) { | |
| 62 // Make local convenience copies of some variables | |
| 63 sample_rate_ = input.sample_rate(); | |
| 64 buffer_length_ = input.buffer_length(); | |
| 65 channel_count_ = 0; | |
| 66 | |
| 67 // Prepare the coefficients and also the output SignalBank | |
| 68 if (!SetPZBankCoeffs()) | |
| 69 return false; | |
| 70 | |
| 71 // The output signal bank should be set up by now. | |
| 72 if (!output_.initialized()) | |
| 73 return false; | |
| 74 | |
| 75 // This initialises all buffers which can be modified by Process() | |
| 76 Reset(); | |
| 77 | |
| 78 return true; | |
| 79 } | |
| 80 | |
| 81 void ModulePZFC::Reset() { | |
| 82 // These buffers may be actively modified by the algorithm | |
| 83 agc_state_.clear(); | |
| 84 agc_state_.resize(channel_count_); | |
| 85 for (int i = 0; i < channel_count_; ++i) { | |
| 86 agc_state_[i].clear(); | |
| 87 agc_state_[i].resize(agc_stage_count_, 0.0f); | |
| 88 } | |
| 89 | |
| 90 state_1_.clear(); | |
| 91 state_1_.resize(channel_count_, 0.0f); | |
| 92 | |
| 93 state_2_.clear(); | |
| 94 state_2_.resize(channel_count_, 0.0f); | |
| 95 | |
| 96 previous_out_.clear(); | |
| 97 previous_out_.resize(channel_count_, 0.0f); | |
| 98 | |
| 99 pole_damps_mod_.clear(); | |
| 100 pole_damps_mod_.resize(channel_count_, 0.0f); | |
| 101 | |
| 102 inputs_.clear(); | |
| 103 inputs_.resize(channel_count_, 0.0f); | |
| 104 | |
| 105 // Init AGC | |
| 106 AGCDampStep(); | |
| 107 // pole_damps_mod_ and agc_state_ are now be initialized | |
| 108 | |
| 109 // Modify the pole dampings and AGC state slightly from their values in | |
| 110 // silence in case the input is abuptly loud. | |
| 111 for (int i = 0; i < channel_count_; ++i) { | |
| 112 pole_damps_mod_[i] += 0.05f; | |
| 113 for (int j = 0; j < agc_stage_count_; ++j) | |
| 114 agc_state_[i][j] += 0.05f; | |
| 115 } | |
| 116 | |
| 117 last_input_ = 0.0f; | |
| 118 } | |
| 119 | |
| 120 bool ModulePZFC::SetPZBankCoeffsERBFitted() { | |
| 121 float parameter_values[3 * 7] = { | |
| 122 // Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec | |
| 123 1.14827, 0.00000, 0.00000, // % SumSqrErr= 10125.41 | |
| 124 0.53571, -0.70128, 0.63246, // % RMSErr = 2.81586 | |
| 125 0.76779, 0.00000, 0.00000, // % MeanErr = 0.00000 | |
| 126 // Inf 0.00000 0.00000 % RMSCost = NaN | |
| 127 0.00000, 0.00000, 0.00000, | |
| 128 6.00000, 0.00000, 0.00000, | |
| 129 1.08869, -0.09470, 0.07844, | |
| 130 10.56432, 2.52732, 1.86895 | |
| 131 // -3.45865 -1.31457 3.91779 % Kv | |
| 132 }; | |
| 133 | |
| 134 // Precalculate the number of channels required - this method is ugly but it | |
| 135 // was the quickest way of converting from MATLAB as the step factor between | |
| 136 // channels can vary quadratically with pole frequency... | |
| 137 | |
| 138 // Normalised maximum pole frequency | |
| 139 float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); | |
| 140 | |
| 141 channel_count_ = 0; | |
| 142 while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) { | |
| 143 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; | |
| 144 float f_dep = ERBTools::Freq2ERB(frequency) | |
| 145 / ERBTools::Freq2ERB(1000.0f) - 1.0f; | |
| 146 float bw = ERBTools::Freq2ERBw(pole_frequency | |
| 147 / (2.0f * M_PI) * sample_rate_); | |
| 148 float step_factor = 1.0f | |
| 149 / (parameter_values[4*3] + parameter_values[4 * 3 + 1] | |
| 150 * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep); // 1/n2 | |
| 151 pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_); | |
| 152 channel_count_++; | |
| 153 } | |
| 154 | |
| 155 // Now the number of channels is known, various buffers for the filterbank | |
| 156 // coefficients can be initialised | |
| 157 pole_dampings_.clear(); | |
| 158 pole_dampings_.resize(channel_count_, 0.0f); | |
| 159 pole_frequencies_.clear(); | |
| 160 pole_frequencies_.resize(channel_count_, 0.0f); | |
| 161 | |
| 162 // Direct-form coefficients | |
| 163 za0_.clear(); | |
| 164 za0_.resize(channel_count_, 0.0f); | |
| 165 za1_.clear(); | |
| 166 za1_.resize(channel_count_, 0.0f); | |
| 167 za2_.clear(); | |
| 168 za2_.resize(channel_count_, 0.0f); | |
| 169 | |
| 170 // The output signal bank | |
| 171 output_.Initialize(channel_count_, buffer_length_, sample_rate_); | |
| 172 | |
| 173 // Reset the pole frequency to maximum | |
| 174 pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); | |
| 175 | |
| 176 for (int i = channel_count_ - 1; i > -1; --i) { | |
| 177 // Store the normalised pole frequncy | |
| 178 pole_frequencies_[i] = pole_frequency; | |
| 179 | |
| 180 // Calculate the real pole frequency from the normalised pole frequency | |
| 181 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; | |
| 182 | |
| 183 // Store the real pole frequency as the 'centre frequency' of the filterbank | |
| 184 // channel | |
| 185 output_.set_centre_frequency(i, frequency); | |
| 186 | |
| 187 // From PZFC_Small_Signal_Params.m { From PZFC_Params.m { | |
| 188 float DpndF = ERBTools::Freq2ERB(frequency) | |
| 189 / ERBTools::Freq2ERB(1000.0f) - 1.0f; | |
| 190 | |
| 191 float p[8]; // Parameters (short name for ease of reading) | |
| 192 | |
| 193 // Use parameter_values to recover the parameter values for this frequency | |
| 194 for (int param = 0; param < 7; ++param) | |
| 195 p[param] = parameter_values[param * 3] | |
| 196 + parameter_values[param * 3 + 1] * DpndF | |
| 197 + parameter_values[param * 3 + 2] * DpndF * DpndF; | |
| 198 | |
| 199 // Calculate the final parameter | |
| 200 p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f); | |
| 201 if (p[7] < 0.2f) | |
| 202 p[7] = 0.2f; | |
| 203 | |
| 204 // Nominal bandwidth at this frequency | |
| 205 float fERBw = ERBTools::Freq2ERBw(frequency); | |
| 206 | |
| 207 // Pole bandwidth | |
| 208 float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2) | |
| 209 * pow(p[4], 0.5f); | |
| 210 | |
| 211 // Pole damping | |
| 212 float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2)); | |
| 213 | |
| 214 // Store the pole damping | |
| 215 pole_dampings_[i] = pole_damping; | |
| 216 | |
| 217 // Zero bandwidth | |
| 218 float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2) | |
| 219 * pow(p[4], 0.5f); | |
| 220 | |
| 221 // Zero frequency | |
| 222 float zero_frequency = p[5] * pole_frequency; | |
| 223 | |
| 224 if (zero_frequency > M_PI) | |
| 225 LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency " | |
| 226 "in ModulePZFC(), continuing anyway but results may not " | |
| 227 "be accurate.")); | |
| 228 | |
| 229 // Zero damping | |
| 230 float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2)); | |
| 231 | |
| 232 // Impulse-invariance mapping | |
| 233 float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2)); | |
| 234 float fZRho = exp(-fZDamp * zero_frequency); | |
| 235 | |
| 236 // Direct-form coefficients | |
| 237 float fA1 = -2.0f * fZRho * cos(fZTheta); | |
| 238 float fA2 = fZRho * fZRho; | |
| 239 | |
| 240 // Normalised to unity gain at DC | |
| 241 float fASum = 1.0f + fA1 + fA2; | |
| 242 za0_[i] = 1.0f / fASum; | |
| 243 za1_[i] = fA1 / fASum; | |
| 244 za2_[i] = fA2 / fASum; | |
| 245 | |
| 246 // Subtract step factor (1/n2) times current bandwidth from the pole | |
| 247 // frequency | |
| 248 pole_frequency -= ((1.0f / p[4]) | |
| 249 * (fERBw * (2.0f * M_PI) / sample_rate_)); | |
| 250 } | |
| 251 return true; | |
| 252 } | |
| 253 | |
| 254 bool ModulePZFC::SetPZBankCoeffs() { | |
| 255 /*! \todo Re-implement the alternative parameter settings | |
| 256 */ | |
| 257 if (!SetPZBankCoeffsERBFitted()) | |
| 258 return false; | |
| 259 | |
| 260 /*! \todo Make fMindamp and fMaxdamp user-settable? | |
| 261 */ | |
| 262 mindamp_ = 0.18f; | |
| 263 maxdamp_ = 0.4f; | |
| 264 | |
| 265 rmin_.resize(channel_count_); | |
| 266 rmax_.resize(channel_count_); | |
| 267 xmin_.resize(channel_count_); | |
| 268 xmax_.resize(channel_count_); | |
| 269 | |
| 270 for (int c = 0; c < channel_count_; ++c) { | |
| 271 // Calculate maximum and minimum damping options | |
| 272 rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]); | |
| 273 rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]); | |
| 274 | |
| 275 xmin_[c] = rmin_[c] * cos(pole_frequencies_[c] | |
| 276 * pow((1-pow(mindamp_, 2)), 0.5f)); | |
| 277 xmax_[c] = rmax_[c] * cos(pole_frequencies_[c] | |
| 278 * pow((1-pow(maxdamp_, 2)), 0.5f)); | |
| 279 } | |
| 280 | |
| 281 // Set up AGC parameters | |
| 282 agc_stage_count_ = 4; | |
| 283 agc_epsilons_.resize(agc_stage_count_); | |
| 284 agc_epsilons_[0] = 0.0064f; | |
| 285 agc_epsilons_[1] = 0.0016f; | |
| 286 agc_epsilons_[2] = 0.0004f; | |
| 287 agc_epsilons_[3] = 0.0001f; | |
| 288 | |
| 289 agc_gains_.resize(agc_stage_count_); | |
| 290 agc_gains_[0] = 1.0f; | |
| 291 agc_gains_[1] = 1.4f; | |
| 292 agc_gains_[2] = 2.0f; | |
| 293 agc_gains_[3] = 2.8f; | |
| 294 | |
| 295 float mean_agc_gain = 0.0f; | |
| 296 for (int c = 0; c < agc_stage_count_; ++c) | |
| 297 mean_agc_gain += agc_gains_[c]; | |
| 298 mean_agc_gain /= static_cast<float>(agc_stage_count_); | |
| 299 | |
| 300 for (int c = 0; c < agc_stage_count_; ++c) | |
| 301 agc_gains_[c] /= mean_agc_gain; | |
| 302 | |
| 303 return true; | |
| 304 } | |
| 305 | |
| 306 void ModulePZFC::AGCDampStep() { | |
| 307 if (detect_.size() == 0) { | |
| 308 // If detect_ is not initialised, it means that the AGC is not set up. | |
| 309 // Set up now. | |
| 310 /*! \todo Make a separate InitAGC function which does this. | |
| 311 */ | |
| 312 detect_.resize(channel_count_); | |
| 313 for (int c = 0; c < channel_count_; ++c) | |
| 314 detect_[c] = 1.0f; | |
| 315 | |
| 316 float fDetectZero = DetectFun(0.0f); | |
| 317 for (int c = 0; c < channel_count_; c++) | |
| 318 detect_[c] *= fDetectZero; | |
| 319 | |
| 320 for (int c = 0; c < channel_count_; c++) | |
| 321 for (int st = 0; st < agc_stage_count_; st++) | |
| 322 agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]); | |
| 323 } | |
| 324 | |
| 325 float fAGCEpsLeft = 0.3f; | |
| 326 float fAGCEpsRight = 0.3f; | |
| 327 | |
| 328 for (int c = channel_count_ - 1; c > -1; --c) { | |
| 329 for (int st = 0; st < agc_stage_count_; ++st) { | |
| 330 // This bounds checking is ugly and wasteful, and in an inner loop. | |
| 331 // If this algorithm is slow, this is why! | |
| 332 /*! \todo Proper non-ugly bounds checking in AGCDampStep() | |
| 333 */ | |
| 334 float fPrevAGCState; | |
| 335 float fCurrAGCState; | |
| 336 float fNextAGCState; | |
| 337 | |
| 338 if (c < channel_count_ - 1) | |
| 339 fPrevAGCState = agc_state_[c + 1][st]; | |
| 340 else | |
| 341 fPrevAGCState = agc_state_[c][st]; | |
| 342 | |
| 343 fCurrAGCState = agc_state_[c][st]; | |
| 344 | |
| 345 if (c > 0) | |
| 346 fNextAGCState = agc_state_[c - 1][st]; | |
| 347 else | |
| 348 fNextAGCState = agc_state_[c][st]; | |
| 349 | |
| 350 // Spatial smoothing | |
| 351 /*! \todo Something odd is going on here | |
| 352 * I think this line is not quite right. | |
| 353 */ | |
| 354 float agc_avg = fAGCEpsLeft * fPrevAGCState | |
| 355 + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState | |
| 356 + fAGCEpsRight * fNextAGCState; | |
| 357 // Temporal smoothing | |
| 358 agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st]) | |
| 359 + agc_epsilons_[st] * detect_[c] * agc_gains_[st]; | |
| 360 } | |
| 361 } | |
| 362 | |
| 363 float fOffset = 1.0f - agc_factor_ * DetectFun(0.0f); | |
| 364 | |
| 365 for (int i = 0; i < channel_count_; ++i) { | |
| 366 float fAGCStateMean = 0.0f; | |
| 367 for (int j = 0; j < agc_stage_count_; ++j) | |
| 368 fAGCStateMean += agc_state_[i][j]; | |
| 369 | |
| 370 fAGCStateMean /= static_cast<float>(agc_stage_count_); | |
| 371 | |
| 372 pole_damps_mod_[i] = pole_dampings_[i] * | |
| 373 (fOffset + agc_factor_ * fAGCStateMean); | |
| 374 } | |
| 375 } | |
| 376 | |
| 377 float ModulePZFC::DetectFun(float fIN) { | |
| 378 if (fIN < 0.0f) | |
| 379 fIN = 0.0f; | |
| 380 float fDetect = Minimum(1.0f, fIN); | |
| 381 float fA = 0.25f; | |
| 382 return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f); | |
| 383 } | |
| 384 | |
| 385 inline float ModulePZFC::Minimum(float a, float b) { | |
| 386 if (a < b) | |
| 387 return a; | |
| 388 else | |
| 389 return b; | |
| 390 } | |
| 391 | |
| 392 void ModulePZFC::Process(const SignalBank& input) { | |
| 393 // Set the start time of the output buffer | |
| 394 output_.set_start_time(input.start_time()); | |
| 395 | |
| 396 for (int iSample = 0; iSample < input.buffer_length(); ++iSample) { | |
| 397 float fInput = input[0][iSample]; | |
| 398 | |
| 399 // Lowpass filter the input with a zero at PI | |
| 400 fInput = 0.5f * fInput + 0.5f * last_input_; | |
| 401 last_input_ = input[0][iSample]; | |
| 402 | |
| 403 inputs_[channel_count_ - 1] = fInput; | |
| 404 for (int c = 0; c < channel_count_ - 1; ++c) | |
| 405 inputs_[c] = previous_out_[c + 1]; | |
| 406 | |
| 407 // PZBankStep2 | |
| 408 // to save a bunch of divides | |
| 409 float damp_rate = 1.0f / (maxdamp_ - mindamp_); | |
| 410 | |
| 411 for (int c = channel_count_ - 1; c > -1; --c) { | |
| 412 float interp_factor = (pole_damps_mod_[c] | |
| 413 - mindamp_) * damp_rate; | |
| 414 | |
| 415 float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor; | |
| 416 float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor; | |
| 417 | |
| 418 // optional improvement to constellation adds a bit to r | |
| 419 float fd = pole_frequencies_[c] * pole_damps_mod_[c]; | |
| 420 // quadratic for small values, then linear | |
| 421 r = r + 0.25f * fd * Minimum(0.05f, fd); | |
| 422 | |
| 423 float zb1 = -2.0f * x; | |
| 424 float zb2 = r * r; | |
| 425 | |
| 426 /* canonic poles but with input provided where unity DC gain is assured | |
| 427 * (mean value of state is always equal to mean value of input) | |
| 428 */ | |
| 429 float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1 | |
| 430 - (state_2_[c] - inputs_[c]) * zb2; | |
| 431 | |
| 432 // canonic zeros part as before: | |
| 433 float output = za0_[c] * new_state + za1_[c] * state_1_[c] | |
| 434 + za2_[c] * state_2_[c]; | |
| 435 | |
| 436 // cubic compression nonlinearity | |
| 437 output = output - 0.0001f * pow(output, 3); | |
| 438 | |
| 439 output_.set_sample(c, iSample, output); | |
| 440 detect_[c] = DetectFun(output); | |
| 441 state_2_[c] = state_1_[c]; | |
| 442 state_1_[c] = new_state; | |
| 443 } | |
| 444 | |
| 445 if (do_agc_step_) | |
| 446 AGCDampStep(); | |
| 447 | |
| 448 for (int c = 0; c < channel_count_; ++c) | |
| 449 previous_out_[c] = output_[c][iSample]; | |
| 450 } | |
| 451 PushOutput(); | |
| 452 } | |
| 453 } // namespace aimc |
