annotate src/Modules/BMM/ModulePZFC.cc @ 187:d7dc7014b0af

- AWS
author tomwalters
date Wed, 11 Aug 2010 22:53:59 +0000
parents eeeb5dceb60e
children 82e0dc3dfd16
rev   line source
tomwalters@0 1 // Copyright 2008-2010, Thomas Walters
tomwalters@0 2 //
tomwalters@0 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@0 4 // http://www.acousticscale.org/AIMC
tomwalters@0 5 //
tomwalters@45 6 // Licensed under the Apache License, Version 2.0 (the "License");
tomwalters@45 7 // you may not use this file except in compliance with the License.
tomwalters@45 8 // You may obtain a copy of the License at
tomwalters@0 9 //
tomwalters@45 10 // http://www.apache.org/licenses/LICENSE-2.0
tomwalters@0 11 //
tomwalters@45 12 // Unless required by applicable law or agreed to in writing, software
tomwalters@45 13 // distributed under the License is distributed on an "AS IS" BASIS,
tomwalters@45 14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tomwalters@45 15 // See the License for the specific language governing permissions and
tomwalters@45 16 // limitations under the License.
tomwalters@0 17
tomwalters@0 18 /*! \file
tomwalters@0 19 * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C
tomwalters@0 20 * module by Tom Walters from the AIM-MAT module based on Dick Lyon's code
tomwalters@0 21 */
tomwalters@0 22
tomwalters@0 23 /*! \author Thomas Walters <tom@acousticscale.org>
tomwalters@0 24 * \date created 2008/02/05
tomwalters@23 25 * \version \$Id$
tomwalters@0 26 */
tomwalters@0 27
tomwalters@0 28 #include "Support/ERBTools.h"
tomwalters@0 29
tomwalters@0 30 #include "Modules/BMM/ModulePZFC.h"
tomwalters@0 31
tomwalters@0 32 namespace aimc {
tomwalters@0 33 ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) {
tomwalters@0 34 module_identifier_ = "pzfc";
tomwalters@0 35 module_type_ = "bmm";
tomwalters@0 36 module_description_ = "Pole-Zero Filter Cascade";
tomwalters@23 37 module_version_ = "$Id$";
tomwalters@0 38
tomwalters@0 39 // Get parameter values, setting default values where necessary
tomwalters@0 40 // Each parameter is set here only if it has not already been set elsewhere.
tomwalters@0 41 cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f);
tomwalters@0 42 cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f);
tomwalters@0 43 pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f);
tomwalters@0 44 zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f);
tomwalters@0 45 zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f);
tomwalters@0 46 step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f);
tomwalters@0 47 bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf",
tomwalters@0 48 0.11f);
tomwalters@0 49 min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz",
tomwalters@0 50 27.0f);
tomwalters@0 51 agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f);
tomwalters@0 52 do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true);
tomwalters@47 53 use_fitted_parameters_ = parameters_->DefaultBool("pzfc.use_fit", false);
tomwalters@0 54
tomwalters@0 55 detect_.resize(0);
tomwalters@0 56 }
tomwalters@0 57
tomwalters@0 58 ModulePZFC::~ModulePZFC() {
tomwalters@0 59 }
tomwalters@0 60
tomwalters@0 61 bool ModulePZFC::InitializeInternal(const SignalBank &input) {
tomwalters@0 62 // Make local convenience copies of some variables
tomwalters@0 63 sample_rate_ = input.sample_rate();
tomwalters@0 64 buffer_length_ = input.buffer_length();
tomwalters@0 65 channel_count_ = 0;
tomwalters@0 66
tomwalters@0 67 // Prepare the coefficients and also the output SignalBank
tomwalters@0 68 if (!SetPZBankCoeffs())
tomwalters@0 69 return false;
tomwalters@0 70
tomwalters@0 71 // The output signal bank should be set up by now.
tomwalters@0 72 if (!output_.initialized())
tomwalters@0 73 return false;
tomwalters@0 74
tomwalters@0 75 // This initialises all buffers which can be modified by Process()
tomwalters@3 76 ResetInternal();
tomwalters@0 77
tomwalters@0 78 return true;
tomwalters@0 79 }
tomwalters@0 80
tomwalters@3 81 void ModulePZFC::ResetInternal() {
tomwalters@0 82 // These buffers may be actively modified by the algorithm
tomwalters@0 83 agc_state_.clear();
tomwalters@0 84 agc_state_.resize(channel_count_);
tomwalters@0 85 for (int i = 0; i < channel_count_; ++i) {
tomwalters@0 86 agc_state_[i].clear();
tomwalters@0 87 agc_state_[i].resize(agc_stage_count_, 0.0f);
tomwalters@0 88 }
tomwalters@0 89
tomwalters@0 90 state_1_.clear();
tomwalters@0 91 state_1_.resize(channel_count_, 0.0f);
tomwalters@0 92
tomwalters@0 93 state_2_.clear();
tomwalters@0 94 state_2_.resize(channel_count_, 0.0f);
tomwalters@0 95
tomwalters@0 96 previous_out_.clear();
tomwalters@0 97 previous_out_.resize(channel_count_, 0.0f);
tomwalters@0 98
tomwalters@0 99 pole_damps_mod_.clear();
tomwalters@0 100 pole_damps_mod_.resize(channel_count_, 0.0f);
tomwalters@0 101
tomwalters@0 102 inputs_.clear();
tomwalters@0 103 inputs_.resize(channel_count_, 0.0f);
tomwalters@0 104
tomwalters@0 105 // Init AGC
tomwalters@0 106 AGCDampStep();
tomwalters@0 107 // pole_damps_mod_ and agc_state_ are now be initialized
tomwalters@0 108
tomwalters@0 109 // Modify the pole dampings and AGC state slightly from their values in
tomwalters@0 110 // silence in case the input is abuptly loud.
tomwalters@0 111 for (int i = 0; i < channel_count_; ++i) {
tomwalters@0 112 pole_damps_mod_[i] += 0.05f;
tomwalters@0 113 for (int j = 0; j < agc_stage_count_; ++j)
tomwalters@0 114 agc_state_[i][j] += 0.05f;
tomwalters@0 115 }
tomwalters@0 116
tomwalters@0 117 last_input_ = 0.0f;
tomwalters@0 118 }
tomwalters@0 119
tomwalters@47 120 bool ModulePZFC::SetPZBankCoeffsOrig() {
tomwalters@47 121 // This function sets the following variables:
tomwalters@47 122 // channel_count_
tomwalters@47 123 // pole_dampings_
tomwalters@47 124 // pole_frequencies_
tomwalters@47 125 // za0_, za1_, za2
tomwalters@47 126 // output_
tomwalters@47 127
tomwalters@47 128 // TODO(tomwalters): There's significant code-duplication between this function
tomwalters@47 129 // and SetPZBankCoeffsERBFitted, and SetPZBankCoeffs
tomwalters@47 130
tomwalters@47 131 // Normalised maximum pole frequency
tomwalters@47 132 float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@47 133 channel_count_ = 0;
tomwalters@47 134 while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) {
tomwalters@158 135 float bw = bandwidth_over_cf_ * pole_frequency + 2 * M_PI * min_bandwidth_hz_ / sample_rate_;
tomwalters@47 136 pole_frequency -= step_factor_ * bw;
tomwalters@47 137 channel_count_++;
tomwalters@47 138 }
tomwalters@47 139
tomwalters@47 140 // Now the number of channels is known, various buffers for the filterbank
tomwalters@47 141 // coefficients can be initialised
tomwalters@47 142 pole_dampings_.clear();
tomwalters@47 143 pole_dampings_.resize(channel_count_, pole_damping_);
tomwalters@47 144 pole_frequencies_.clear();
tomwalters@47 145 pole_frequencies_.resize(channel_count_, 0.0f);
tomwalters@47 146
tomwalters@47 147 // Direct-form coefficients
tomwalters@47 148 za0_.clear();
tomwalters@47 149 za0_.resize(channel_count_, 0.0f);
tomwalters@47 150 za1_.clear();
tomwalters@47 151 za1_.resize(channel_count_, 0.0f);
tomwalters@47 152 za2_.clear();
tomwalters@47 153 za2_.resize(channel_count_, 0.0f);
tomwalters@47 154
tomwalters@47 155 // The output signal bank
tomwalters@47 156 output_.Initialize(channel_count_, buffer_length_, sample_rate_);
tomwalters@47 157
tomwalters@47 158 // Reset the pole frequency to maximum
tomwalters@47 159 pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@47 160
tomwalters@47 161 for (int i = channel_count_ - 1; i > -1; --i) {
tomwalters@47 162 // Store the normalised pole frequncy
tomwalters@47 163 pole_frequencies_[i] = pole_frequency;
tomwalters@47 164
tomwalters@47 165 // Calculate the real pole frequency from the normalised pole frequency
tomwalters@47 166 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
tomwalters@47 167
tomwalters@47 168 // Store the real pole frequency as the 'centre frequency' of the filterbank
tomwalters@47 169 // channel
tomwalters@47 170 output_.set_centre_frequency(i, frequency);
tomwalters@47 171
tomwalters@158 172 float zero_frequency = Minimum(M_PI, zero_factor_ * pole_frequency);
tomwalters@47 173
tomwalters@47 174 // Impulse-invariance mapping
tomwalters@47 175 float z_plane_theta = zero_frequency * sqrt(1.0f - pow(zero_damping_, 2));
tomwalters@47 176 float z_plane_rho = exp(-zero_damping_ * zero_frequency);
tomwalters@47 177
tomwalters@47 178 // Direct-form coefficients from z-plane rho and theta
tomwalters@47 179 float a1 = -2.0f * z_plane_rho * cos(z_plane_theta);
tomwalters@47 180 float a2 = z_plane_rho * z_plane_rho;
tomwalters@47 181
tomwalters@47 182 // Normalised to unity gain at DC
tomwalters@47 183 float a_sum = 1.0f + a1 + a2;
tomwalters@47 184 za0_[i] = 1.0f / a_sum;
tomwalters@47 185 za1_[i] = a1 / a_sum;
tomwalters@47 186 za2_[i] = a2 / a_sum;
tomwalters@47 187
tomwalters@47 188 // Subtract step factor (1/n2) times current bandwidth from the pole
tomwalters@47 189 // frequency
tomwalters@158 190 float bw = bandwidth_over_cf_ * pole_frequency + 2 * M_PI * min_bandwidth_hz_ / sample_rate_;
tomwalters@47 191 pole_frequency -= step_factor_ * bw;
tomwalters@47 192 }
tomwalters@47 193 return true;
tomwalters@47 194 }
tomwalters@47 195
tomwalters@47 196
tomwalters@47 197 bool ModulePZFC::SetPZBankCoeffsERB() {
tomwalters@47 198 // This function sets the following variables:
tomwalters@47 199 // channel_count_
tomwalters@47 200 // pole_dampings_
tomwalters@47 201 // pole_frequencies_
tomwalters@47 202 // za0_, za1_, za2
tomwalters@47 203 // output_
tomwalters@47 204
tomwalters@47 205 // TODO(tomwalters): There's significant code-duplication between here,
tomwalters@47 206 // SetPZBankCoeffsERBFitted, and SetPZBankCoeffs
tomwalters@47 207
tomwalters@47 208 // Normalised maximum pole frequency
tomwalters@47 209 float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@47 210 channel_count_ = 0;
tomwalters@47 211 while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) {
tomwalters@47 212 float bw = ERBTools::Freq2ERBw(pole_frequency
tomwalters@47 213 / (2.0f * M_PI) * sample_rate_);
tomwalters@47 214 pole_frequency -= step_factor_ * (bw * (2.0f * M_PI) / sample_rate_);
tomwalters@47 215 channel_count_++;
tomwalters@47 216 }
tomwalters@47 217
tomwalters@47 218 // Now the number of channels is known, various buffers for the filterbank
tomwalters@47 219 // coefficients can be initialised
tomwalters@47 220 pole_dampings_.clear();
tomwalters@47 221 pole_dampings_.resize(channel_count_, pole_damping_);
tomwalters@47 222 pole_frequencies_.clear();
tomwalters@47 223 pole_frequencies_.resize(channel_count_, 0.0f);
tomwalters@47 224
tomwalters@47 225 // Direct-form coefficients
tomwalters@47 226 za0_.clear();
tomwalters@47 227 za0_.resize(channel_count_, 0.0f);
tomwalters@47 228 za1_.clear();
tomwalters@47 229 za1_.resize(channel_count_, 0.0f);
tomwalters@47 230 za2_.clear();
tomwalters@47 231 za2_.resize(channel_count_, 0.0f);
tomwalters@47 232
tomwalters@47 233 // The output signal bank
tomwalters@47 234 output_.Initialize(channel_count_, buffer_length_, sample_rate_);
tomwalters@47 235
tomwalters@47 236 // Reset the pole frequency to maximum
tomwalters@47 237 pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@47 238
tomwalters@47 239 for (int i = channel_count_ - 1; i > -1; --i) {
tomwalters@47 240 // Store the normalised pole frequncy
tomwalters@47 241 pole_frequencies_[i] = pole_frequency;
tomwalters@47 242
tomwalters@47 243 // Calculate the real pole frequency from the normalised pole frequency
tomwalters@47 244 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
tomwalters@47 245
tomwalters@47 246 // Store the real pole frequency as the 'centre frequency' of the filterbank
tomwalters@47 247 // channel
tomwalters@47 248 output_.set_centre_frequency(i, frequency);
tomwalters@47 249
tomwalters@158 250 float zero_frequency = Minimum(M_PI, zero_factor_ * pole_frequency);
tomwalters@47 251
tomwalters@47 252 // Impulse-invariance mapping
tomwalters@47 253 float z_plane_theta = zero_frequency * sqrt(1.0f - pow(zero_damping_, 2));
tomwalters@47 254 float z_plane_rho = exp(-zero_damping_ * zero_frequency);
tomwalters@47 255
tomwalters@47 256 // Direct-form coefficients from z-plane rho and theta
tomwalters@47 257 float a1 = -2.0f * z_plane_rho * cos(z_plane_theta);
tomwalters@47 258 float a2 = z_plane_rho * z_plane_rho;
tomwalters@47 259
tomwalters@47 260 // Normalised to unity gain at DC
tomwalters@47 261 float a_sum = 1.0f + a1 + a2;
tomwalters@47 262 za0_[i] = 1.0f / a_sum;
tomwalters@47 263 za1_[i] = a1 / a_sum;
tomwalters@47 264 za2_[i] = a2 / a_sum;
tomwalters@47 265
tomwalters@47 266 float bw = ERBTools::Freq2ERBw(pole_frequency
tomwalters@47 267 / (2.0f * M_PI) * sample_rate_);
tomwalters@47 268 pole_frequency -= step_factor_ * (bw * (2.0f * M_PI) / sample_rate_);
tomwalters@47 269 }
tomwalters@47 270 return true;
tomwalters@47 271 }
tomwalters@47 272
tomwalters@0 273 bool ModulePZFC::SetPZBankCoeffsERBFitted() {
tomwalters@47 274 //float parameter_values[3 * 7] = {
tomwalters@47 275 //// Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec
tomwalters@47 276 //1.14827, 0.00000, 0.00000, // % SumSqrErr= 10125.41
tomwalters@47 277 //0.53571, -0.70128, 0.63246, // % RMSErr = 2.81586
tomwalters@47 278 //0.76779, 0.00000, 0.00000, // % MeanErr = 0.00000
tomwalters@47 279 //// Inf 0.00000 0.00000 % RMSCost = NaN
tomwalters@47 280 //0.00000, 0.00000, 0.00000,
tomwalters@47 281 //6.00000, 0.00000, 0.00000,
tomwalters@47 282 //1.08869, -0.09470, 0.07844,
tomwalters@47 283 //10.56432, 2.52732, 1.86895
tomwalters@47 284 //// -3.45865 -1.31457 3.91779 % Kv
tomwalters@47 285 //};
tomwalters@47 286
tomwalters@0 287 float parameter_values[3 * 7] = {
tomwalters@47 288 // Fit 515 from Dick
tomwalters@47 289 // Final, Nfit = 515, 9-3 parameters, PZFC, cwt 0
tomwalters@47 290 1.72861, 0.00000, 0.00000, // SumSqrErr = 13622.24
tomwalters@47 291 0.56657, -0.93911, 0.89163, // RMSErr = 3.26610
tomwalters@47 292 0.39469, 0.00000, 0.00000, // MeanErr = 0.00000
tomwalters@47 293 // Inf, 0.00000, 0.00000, // RMSCost = NaN - would set coefc to infinity, but this isn't passed on
tomwalters@47 294 0.00000, 0.00000, 0.00000,
tomwalters@47 295 2.00000, 0.00000, 0.00000, //
tomwalters@47 296 1.27393, 0.00000, 0.00000,
tomwalters@47 297 11.46247, 5.46894, 0.11800
tomwalters@47 298 // -4.15525, 1.54874, 2.99858 // Kv
tomwalters@0 299 };
tomwalters@0 300
tomwalters@0 301 // Precalculate the number of channels required - this method is ugly but it
tomwalters@0 302 // was the quickest way of converting from MATLAB as the step factor between
tomwalters@0 303 // channels can vary quadratically with pole frequency...
tomwalters@0 304
tomwalters@0 305 // Normalised maximum pole frequency
tomwalters@0 306 float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@0 307
tomwalters@0 308 channel_count_ = 0;
tomwalters@0 309 while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) {
tomwalters@0 310 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
tomwalters@0 311 float f_dep = ERBTools::Freq2ERB(frequency)
tomwalters@0 312 / ERBTools::Freq2ERB(1000.0f) - 1.0f;
tomwalters@0 313 float bw = ERBTools::Freq2ERBw(pole_frequency
tomwalters@0 314 / (2.0f * M_PI) * sample_rate_);
tomwalters@0 315 float step_factor = 1.0f
tomwalters@0 316 / (parameter_values[4*3] + parameter_values[4 * 3 + 1]
tomwalters@0 317 * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep); // 1/n2
tomwalters@0 318 pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_);
tomwalters@0 319 channel_count_++;
tomwalters@0 320 }
tomwalters@0 321
tomwalters@0 322 // Now the number of channels is known, various buffers for the filterbank
tomwalters@0 323 // coefficients can be initialised
tomwalters@0 324 pole_dampings_.clear();
tomwalters@0 325 pole_dampings_.resize(channel_count_, 0.0f);
tomwalters@0 326 pole_frequencies_.clear();
tomwalters@0 327 pole_frequencies_.resize(channel_count_, 0.0f);
tomwalters@0 328
tomwalters@0 329 // Direct-form coefficients
tomwalters@0 330 za0_.clear();
tomwalters@0 331 za0_.resize(channel_count_, 0.0f);
tomwalters@0 332 za1_.clear();
tomwalters@0 333 za1_.resize(channel_count_, 0.0f);
tomwalters@0 334 za2_.clear();
tomwalters@0 335 za2_.resize(channel_count_, 0.0f);
tomwalters@0 336
tomwalters@0 337 // The output signal bank
tomwalters@0 338 output_.Initialize(channel_count_, buffer_length_, sample_rate_);
tomwalters@0 339
tomwalters@0 340 // Reset the pole frequency to maximum
tomwalters@0 341 pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@0 342
tomwalters@0 343 for (int i = channel_count_ - 1; i > -1; --i) {
tomwalters@0 344 // Store the normalised pole frequncy
tomwalters@0 345 pole_frequencies_[i] = pole_frequency;
tomwalters@0 346
tomwalters@0 347 // Calculate the real pole frequency from the normalised pole frequency
tomwalters@0 348 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
tomwalters@0 349
tomwalters@0 350 // Store the real pole frequency as the 'centre frequency' of the filterbank
tomwalters@0 351 // channel
tomwalters@0 352 output_.set_centre_frequency(i, frequency);
tomwalters@0 353
tomwalters@0 354 // From PZFC_Small_Signal_Params.m { From PZFC_Params.m {
tomwalters@0 355 float DpndF = ERBTools::Freq2ERB(frequency)
tomwalters@0 356 / ERBTools::Freq2ERB(1000.0f) - 1.0f;
tomwalters@0 357
tomwalters@0 358 float p[8]; // Parameters (short name for ease of reading)
tomwalters@0 359
tomwalters@0 360 // Use parameter_values to recover the parameter values for this frequency
tomwalters@0 361 for (int param = 0; param < 7; ++param)
tomwalters@0 362 p[param] = parameter_values[param * 3]
tomwalters@0 363 + parameter_values[param * 3 + 1] * DpndF
tomwalters@0 364 + parameter_values[param * 3 + 2] * DpndF * DpndF;
tomwalters@0 365
tomwalters@0 366 // Calculate the final parameter
tomwalters@0 367 p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f);
tomwalters@0 368 if (p[7] < 0.2f)
tomwalters@0 369 p[7] = 0.2f;
tomwalters@0 370
tomwalters@0 371 // Nominal bandwidth at this frequency
tomwalters@0 372 float fERBw = ERBTools::Freq2ERBw(frequency);
tomwalters@0 373
tomwalters@0 374 // Pole bandwidth
tomwalters@0 375 float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2)
tomwalters@0 376 * pow(p[4], 0.5f);
tomwalters@0 377
tomwalters@0 378 // Pole damping
tomwalters@0 379 float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2));
tomwalters@0 380
tomwalters@0 381 // Store the pole damping
tomwalters@0 382 pole_dampings_[i] = pole_damping;
tomwalters@0 383
tomwalters@0 384 // Zero bandwidth
tomwalters@0 385 float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2)
tomwalters@0 386 * pow(p[4], 0.5f);
tomwalters@0 387
tomwalters@0 388 // Zero frequency
tomwalters@0 389 float zero_frequency = p[5] * pole_frequency;
tomwalters@0 390
tomwalters@0 391 if (zero_frequency > M_PI)
tomwalters@0 392 LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency "
tomwalters@0 393 "in ModulePZFC(), continuing anyway but results may not "
tomwalters@0 394 "be accurate."));
tomwalters@0 395
tomwalters@0 396 // Zero damping
tomwalters@0 397 float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2));
tomwalters@0 398
tomwalters@0 399 // Impulse-invariance mapping
tomwalters@0 400 float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2));
tomwalters@0 401 float fZRho = exp(-fZDamp * zero_frequency);
tomwalters@0 402
tomwalters@0 403 // Direct-form coefficients
tomwalters@0 404 float fA1 = -2.0f * fZRho * cos(fZTheta);
tomwalters@0 405 float fA2 = fZRho * fZRho;
tomwalters@0 406
tomwalters@0 407 // Normalised to unity gain at DC
tomwalters@0 408 float fASum = 1.0f + fA1 + fA2;
tomwalters@0 409 za0_[i] = 1.0f / fASum;
tomwalters@0 410 za1_[i] = fA1 / fASum;
tomwalters@0 411 za2_[i] = fA2 / fASum;
tomwalters@0 412
tomwalters@0 413 // Subtract step factor (1/n2) times current bandwidth from the pole
tomwalters@0 414 // frequency
tomwalters@0 415 pole_frequency -= ((1.0f / p[4])
tomwalters@0 416 * (fERBw * (2.0f * M_PI) / sample_rate_));
tomwalters@0 417 }
tomwalters@0 418 return true;
tomwalters@0 419 }
tomwalters@0 420
tomwalters@0 421 bool ModulePZFC::SetPZBankCoeffs() {
tomwalters@0 422 /*! \todo Re-implement the alternative parameter settings
tomwalters@0 423 */
tomwalters@47 424 if (use_fitted_parameters_) {
tomwalters@47 425 if (!SetPZBankCoeffsERBFitted())
tomwalters@47 426 return false;
tomwalters@47 427 } else {
tomwalters@47 428 if (!SetPZBankCoeffsOrig())
tomwalters@158 429 return false;
tomwalters@47 430 }
tomwalters@0 431
tomwalters@0 432 /*! \todo Make fMindamp and fMaxdamp user-settable?
tomwalters@0 433 */
tomwalters@0 434 mindamp_ = 0.18f;
tomwalters@0 435 maxdamp_ = 0.4f;
tomwalters@0 436
tomwalters@0 437 rmin_.resize(channel_count_);
tomwalters@0 438 rmax_.resize(channel_count_);
tomwalters@0 439 xmin_.resize(channel_count_);
tomwalters@0 440 xmax_.resize(channel_count_);
tomwalters@0 441
tomwalters@0 442 for (int c = 0; c < channel_count_; ++c) {
tomwalters@0 443 // Calculate maximum and minimum damping options
tomwalters@0 444 rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]);
tomwalters@0 445 rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]);
tomwalters@0 446
tomwalters@0 447 xmin_[c] = rmin_[c] * cos(pole_frequencies_[c]
tomwalters@0 448 * pow((1-pow(mindamp_, 2)), 0.5f));
tomwalters@0 449 xmax_[c] = rmax_[c] * cos(pole_frequencies_[c]
tomwalters@0 450 * pow((1-pow(maxdamp_, 2)), 0.5f));
tomwalters@0 451 }
tomwalters@0 452
tomwalters@0 453 // Set up AGC parameters
tomwalters@0 454 agc_stage_count_ = 4;
tomwalters@0 455 agc_epsilons_.resize(agc_stage_count_);
tomwalters@0 456 agc_epsilons_[0] = 0.0064f;
tomwalters@0 457 agc_epsilons_[1] = 0.0016f;
tomwalters@0 458 agc_epsilons_[2] = 0.0004f;
tomwalters@0 459 agc_epsilons_[3] = 0.0001f;
tomwalters@0 460
tomwalters@0 461 agc_gains_.resize(agc_stage_count_);
tomwalters@0 462 agc_gains_[0] = 1.0f;
tomwalters@0 463 agc_gains_[1] = 1.4f;
tomwalters@0 464 agc_gains_[2] = 2.0f;
tomwalters@0 465 agc_gains_[3] = 2.8f;
tomwalters@0 466
tomwalters@0 467 float mean_agc_gain = 0.0f;
tomwalters@0 468 for (int c = 0; c < agc_stage_count_; ++c)
tomwalters@0 469 mean_agc_gain += agc_gains_[c];
tomwalters@0 470 mean_agc_gain /= static_cast<float>(agc_stage_count_);
tomwalters@0 471
tomwalters@0 472 for (int c = 0; c < agc_stage_count_; ++c)
tomwalters@0 473 agc_gains_[c] /= mean_agc_gain;
tomwalters@0 474
tomwalters@0 475 return true;
tomwalters@0 476 }
tomwalters@0 477
tomwalters@0 478 void ModulePZFC::AGCDampStep() {
tomwalters@0 479 if (detect_.size() == 0) {
tomwalters@0 480 // If detect_ is not initialised, it means that the AGC is not set up.
tomwalters@0 481 // Set up now.
tomwalters@0 482 /*! \todo Make a separate InitAGC function which does this.
tomwalters@0 483 */
tomwalters@44 484 detect_.clear();
tomwalters@44 485 float detect_zero = DetectFun(0.0f);
tomwalters@44 486 detect_.resize(channel_count_, detect_zero);
tomwalters@0 487
tomwalters@0 488 for (int c = 0; c < channel_count_; c++)
tomwalters@0 489 for (int st = 0; st < agc_stage_count_; st++)
tomwalters@0 490 agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]);
tomwalters@0 491 }
tomwalters@0 492
tomwalters@0 493 float fAGCEpsLeft = 0.3f;
tomwalters@0 494 float fAGCEpsRight = 0.3f;
tomwalters@0 495
tomwalters@0 496 for (int c = channel_count_ - 1; c > -1; --c) {
tomwalters@0 497 for (int st = 0; st < agc_stage_count_; ++st) {
tomwalters@0 498 // This bounds checking is ugly and wasteful, and in an inner loop.
tomwalters@0 499 // If this algorithm is slow, this is why!
tomwalters@0 500 /*! \todo Proper non-ugly bounds checking in AGCDampStep()
tomwalters@0 501 */
tomwalters@0 502 float fPrevAGCState;
tomwalters@0 503 float fCurrAGCState;
tomwalters@0 504 float fNextAGCState;
tomwalters@0 505
tomwalters@0 506 if (c < channel_count_ - 1)
tomwalters@0 507 fPrevAGCState = agc_state_[c + 1][st];
tomwalters@0 508 else
tomwalters@0 509 fPrevAGCState = agc_state_[c][st];
tomwalters@0 510
tomwalters@0 511 fCurrAGCState = agc_state_[c][st];
tomwalters@0 512
tomwalters@0 513 if (c > 0)
tomwalters@0 514 fNextAGCState = agc_state_[c - 1][st];
tomwalters@0 515 else
tomwalters@0 516 fNextAGCState = agc_state_[c][st];
tomwalters@0 517
tomwalters@0 518 // Spatial smoothing
tomwalters@0 519 /*! \todo Something odd is going on here
tomwalters@0 520 * I think this line is not quite right.
tomwalters@0 521 */
tomwalters@0 522 float agc_avg = fAGCEpsLeft * fPrevAGCState
tomwalters@0 523 + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState
tomwalters@0 524 + fAGCEpsRight * fNextAGCState;
tomwalters@0 525 // Temporal smoothing
tomwalters@0 526 agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st])
tomwalters@0 527 + agc_epsilons_[st] * detect_[c] * agc_gains_[st];
tomwalters@0 528 }
tomwalters@0 529 }
tomwalters@0 530
tomwalters@44 531 float offset = 1.0f - agc_factor_ * DetectFun(0.0f);
tomwalters@0 532
tomwalters@0 533 for (int i = 0; i < channel_count_; ++i) {
tomwalters@0 534 float fAGCStateMean = 0.0f;
tomwalters@0 535 for (int j = 0; j < agc_stage_count_; ++j)
tomwalters@0 536 fAGCStateMean += agc_state_[i][j];
tomwalters@0 537
tomwalters@0 538 fAGCStateMean /= static_cast<float>(agc_stage_count_);
tomwalters@0 539
tomwalters@0 540 pole_damps_mod_[i] = pole_dampings_[i] *
tomwalters@44 541 (offset + agc_factor_ * fAGCStateMean);
tomwalters@0 542 }
tomwalters@0 543 }
tomwalters@0 544
tomwalters@0 545 float ModulePZFC::DetectFun(float fIN) {
tomwalters@0 546 if (fIN < 0.0f)
tomwalters@0 547 fIN = 0.0f;
tomwalters@0 548 float fDetect = Minimum(1.0f, fIN);
tomwalters@0 549 float fA = 0.25f;
tomwalters@0 550 return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f);
tomwalters@0 551 }
tomwalters@0 552
tomwalters@0 553 inline float ModulePZFC::Minimum(float a, float b) {
tomwalters@0 554 if (a < b)
tomwalters@0 555 return a;
tomwalters@0 556 else
tomwalters@0 557 return b;
tomwalters@0 558 }
tomwalters@0 559
tomwalters@0 560 void ModulePZFC::Process(const SignalBank& input) {
tomwalters@0 561 // Set the start time of the output buffer
tomwalters@0 562 output_.set_start_time(input.start_time());
tomwalters@0 563
tomwalters@44 564 for (int s = 0; s < input.buffer_length(); ++s) {
tomwalters@44 565 float input_sample = input.sample(0, s);
tomwalters@0 566
tomwalters@0 567 // Lowpass filter the input with a zero at PI
tomwalters@44 568 input_sample = 0.5f * input_sample + 0.5f * last_input_;
tomwalters@44 569 last_input_ = input.sample(0, s);
tomwalters@0 570
tomwalters@44 571 inputs_[channel_count_ - 1] = input_sample;
tomwalters@0 572 for (int c = 0; c < channel_count_ - 1; ++c)
tomwalters@0 573 inputs_[c] = previous_out_[c + 1];
tomwalters@0 574
tomwalters@0 575 // PZBankStep2
tomwalters@0 576 // to save a bunch of divides
tomwalters@0 577 float damp_rate = 1.0f / (maxdamp_ - mindamp_);
tomwalters@0 578
tomwalters@0 579 for (int c = channel_count_ - 1; c > -1; --c) {
tomwalters@44 580 float interp_factor = (pole_damps_mod_[c] - mindamp_) * damp_rate;
tomwalters@0 581
tomwalters@0 582 float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor;
tomwalters@0 583 float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor;
tomwalters@0 584
tomwalters@0 585 // optional improvement to constellation adds a bit to r
tomwalters@0 586 float fd = pole_frequencies_[c] * pole_damps_mod_[c];
tomwalters@0 587 // quadratic for small values, then linear
tomwalters@0 588 r = r + 0.25f * fd * Minimum(0.05f, fd);
tomwalters@0 589
tomwalters@0 590 float zb1 = -2.0f * x;
tomwalters@0 591 float zb2 = r * r;
tomwalters@0 592
tomwalters@0 593 /* canonic poles but with input provided where unity DC gain is assured
tomwalters@0 594 * (mean value of state is always equal to mean value of input)
tomwalters@0 595 */
tomwalters@0 596 float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1
tomwalters@0 597 - (state_2_[c] - inputs_[c]) * zb2;
tomwalters@0 598
tomwalters@0 599 // canonic zeros part as before:
tomwalters@0 600 float output = za0_[c] * new_state + za1_[c] * state_1_[c]
tomwalters@0 601 + za2_[c] * state_2_[c];
tomwalters@0 602
tomwalters@0 603 // cubic compression nonlinearity
tomwalters@44 604 output -= 0.0001f * pow(output, 3);
tomwalters@0 605
tomwalters@44 606 output_.set_sample(c, s, output);
tomwalters@0 607 detect_[c] = DetectFun(output);
tomwalters@0 608 state_2_[c] = state_1_[c];
tomwalters@0 609 state_1_[c] = new_state;
tomwalters@0 610 }
tomwalters@0 611
tomwalters@0 612 if (do_agc_step_)
tomwalters@0 613 AGCDampStep();
tomwalters@0 614
tomwalters@0 615 for (int c = 0; c < channel_count_; ++c)
tomwalters@44 616 previous_out_[c] = output_[c][s];
tomwalters@0 617 }
tomwalters@0 618 PushOutput();
tomwalters@0 619 }
tomwalters@0 620 } // namespace aimc