annotate src/Modules/BMM/ModulePZFC.cc @ 45:c5f5e9569863

- Modified licence from GPL 3 to Apache v2
author tomwalters
date Tue, 30 Mar 2010 22:06:24 +0000
parents 3816c1b1e255
children 2204b3a05a28
rev   line source
tomwalters@0 1 // Copyright 2008-2010, Thomas Walters
tomwalters@0 2 //
tomwalters@0 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@0 4 // http://www.acousticscale.org/AIMC
tomwalters@0 5 //
tomwalters@45 6 // Licensed under the Apache License, Version 2.0 (the "License");
tomwalters@45 7 // you may not use this file except in compliance with the License.
tomwalters@45 8 // You may obtain a copy of the License at
tomwalters@0 9 //
tomwalters@45 10 // http://www.apache.org/licenses/LICENSE-2.0
tomwalters@0 11 //
tomwalters@45 12 // Unless required by applicable law or agreed to in writing, software
tomwalters@45 13 // distributed under the License is distributed on an "AS IS" BASIS,
tomwalters@45 14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tomwalters@45 15 // See the License for the specific language governing permissions and
tomwalters@45 16 // limitations under the License.
tomwalters@0 17
tomwalters@0 18 /*! \file
tomwalters@0 19 * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C
tomwalters@0 20 * module by Tom Walters from the AIM-MAT module based on Dick Lyon's code
tomwalters@0 21 */
tomwalters@0 22
tomwalters@0 23 /*! \author Thomas Walters <tom@acousticscale.org>
tomwalters@0 24 * \date created 2008/02/05
tomwalters@23 25 * \version \$Id$
tomwalters@0 26 */
tomwalters@0 27
tomwalters@0 28 #include "Support/ERBTools.h"
tomwalters@0 29
tomwalters@0 30 #include "Modules/BMM/ModulePZFC.h"
tomwalters@0 31
tomwalters@0 32 namespace aimc {
tomwalters@0 33 ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) {
tomwalters@0 34 module_identifier_ = "pzfc";
tomwalters@0 35 module_type_ = "bmm";
tomwalters@0 36 module_description_ = "Pole-Zero Filter Cascade";
tomwalters@23 37 module_version_ = "$Id$";
tomwalters@0 38
tomwalters@0 39 // Get parameter values, setting default values where necessary
tomwalters@0 40 // Each parameter is set here only if it has not already been set elsewhere.
tomwalters@0 41 cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f);
tomwalters@0 42 cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f);
tomwalters@0 43 pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f);
tomwalters@0 44 zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f);
tomwalters@0 45 zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f);
tomwalters@0 46 step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f);
tomwalters@0 47 bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf",
tomwalters@0 48 0.11f);
tomwalters@0 49 min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz",
tomwalters@0 50 27.0f);
tomwalters@0 51 agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f);
tomwalters@0 52 do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true);
tomwalters@0 53
tomwalters@0 54 detect_.resize(0);
tomwalters@0 55 }
tomwalters@0 56
tomwalters@0 57 ModulePZFC::~ModulePZFC() {
tomwalters@0 58 }
tomwalters@0 59
tomwalters@0 60 bool ModulePZFC::InitializeInternal(const SignalBank &input) {
tomwalters@0 61 // Make local convenience copies of some variables
tomwalters@0 62 sample_rate_ = input.sample_rate();
tomwalters@0 63 buffer_length_ = input.buffer_length();
tomwalters@0 64 channel_count_ = 0;
tomwalters@0 65
tomwalters@0 66 // Prepare the coefficients and also the output SignalBank
tomwalters@0 67 if (!SetPZBankCoeffs())
tomwalters@0 68 return false;
tomwalters@0 69
tomwalters@0 70 // The output signal bank should be set up by now.
tomwalters@0 71 if (!output_.initialized())
tomwalters@0 72 return false;
tomwalters@0 73
tomwalters@0 74 // This initialises all buffers which can be modified by Process()
tomwalters@3 75 ResetInternal();
tomwalters@0 76
tomwalters@0 77 return true;
tomwalters@0 78 }
tomwalters@0 79
tomwalters@3 80 void ModulePZFC::ResetInternal() {
tomwalters@0 81 // These buffers may be actively modified by the algorithm
tomwalters@0 82 agc_state_.clear();
tomwalters@0 83 agc_state_.resize(channel_count_);
tomwalters@0 84 for (int i = 0; i < channel_count_; ++i) {
tomwalters@0 85 agc_state_[i].clear();
tomwalters@0 86 agc_state_[i].resize(agc_stage_count_, 0.0f);
tomwalters@0 87 }
tomwalters@0 88
tomwalters@0 89 state_1_.clear();
tomwalters@0 90 state_1_.resize(channel_count_, 0.0f);
tomwalters@0 91
tomwalters@0 92 state_2_.clear();
tomwalters@0 93 state_2_.resize(channel_count_, 0.0f);
tomwalters@0 94
tomwalters@0 95 previous_out_.clear();
tomwalters@0 96 previous_out_.resize(channel_count_, 0.0f);
tomwalters@0 97
tomwalters@0 98 pole_damps_mod_.clear();
tomwalters@0 99 pole_damps_mod_.resize(channel_count_, 0.0f);
tomwalters@0 100
tomwalters@0 101 inputs_.clear();
tomwalters@0 102 inputs_.resize(channel_count_, 0.0f);
tomwalters@0 103
tomwalters@0 104 // Init AGC
tomwalters@0 105 AGCDampStep();
tomwalters@0 106 // pole_damps_mod_ and agc_state_ are now be initialized
tomwalters@0 107
tomwalters@0 108 // Modify the pole dampings and AGC state slightly from their values in
tomwalters@0 109 // silence in case the input is abuptly loud.
tomwalters@0 110 for (int i = 0; i < channel_count_; ++i) {
tomwalters@0 111 pole_damps_mod_[i] += 0.05f;
tomwalters@0 112 for (int j = 0; j < agc_stage_count_; ++j)
tomwalters@0 113 agc_state_[i][j] += 0.05f;
tomwalters@0 114 }
tomwalters@0 115
tomwalters@0 116 last_input_ = 0.0f;
tomwalters@0 117 }
tomwalters@0 118
tomwalters@0 119 bool ModulePZFC::SetPZBankCoeffsERBFitted() {
tomwalters@0 120 float parameter_values[3 * 7] = {
tomwalters@0 121 // Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec
tomwalters@0 122 1.14827, 0.00000, 0.00000, // % SumSqrErr= 10125.41
tomwalters@0 123 0.53571, -0.70128, 0.63246, // % RMSErr = 2.81586
tomwalters@0 124 0.76779, 0.00000, 0.00000, // % MeanErr = 0.00000
tomwalters@0 125 // Inf 0.00000 0.00000 % RMSCost = NaN
tomwalters@0 126 0.00000, 0.00000, 0.00000,
tomwalters@0 127 6.00000, 0.00000, 0.00000,
tomwalters@0 128 1.08869, -0.09470, 0.07844,
tomwalters@0 129 10.56432, 2.52732, 1.86895
tomwalters@0 130 // -3.45865 -1.31457 3.91779 % Kv
tomwalters@0 131 };
tomwalters@0 132
tomwalters@0 133 // Precalculate the number of channels required - this method is ugly but it
tomwalters@0 134 // was the quickest way of converting from MATLAB as the step factor between
tomwalters@0 135 // channels can vary quadratically with pole frequency...
tomwalters@0 136
tomwalters@0 137 // Normalised maximum pole frequency
tomwalters@0 138 float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@0 139
tomwalters@0 140 channel_count_ = 0;
tomwalters@0 141 while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) {
tomwalters@0 142 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
tomwalters@0 143 float f_dep = ERBTools::Freq2ERB(frequency)
tomwalters@0 144 / ERBTools::Freq2ERB(1000.0f) - 1.0f;
tomwalters@0 145 float bw = ERBTools::Freq2ERBw(pole_frequency
tomwalters@0 146 / (2.0f * M_PI) * sample_rate_);
tomwalters@0 147 float step_factor = 1.0f
tomwalters@0 148 / (parameter_values[4*3] + parameter_values[4 * 3 + 1]
tomwalters@0 149 * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep); // 1/n2
tomwalters@0 150 pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_);
tomwalters@0 151 channel_count_++;
tomwalters@0 152 }
tomwalters@0 153
tomwalters@0 154 // Now the number of channels is known, various buffers for the filterbank
tomwalters@0 155 // coefficients can be initialised
tomwalters@0 156 pole_dampings_.clear();
tomwalters@0 157 pole_dampings_.resize(channel_count_, 0.0f);
tomwalters@0 158 pole_frequencies_.clear();
tomwalters@0 159 pole_frequencies_.resize(channel_count_, 0.0f);
tomwalters@0 160
tomwalters@0 161 // Direct-form coefficients
tomwalters@0 162 za0_.clear();
tomwalters@0 163 za0_.resize(channel_count_, 0.0f);
tomwalters@0 164 za1_.clear();
tomwalters@0 165 za1_.resize(channel_count_, 0.0f);
tomwalters@0 166 za2_.clear();
tomwalters@0 167 za2_.resize(channel_count_, 0.0f);
tomwalters@0 168
tomwalters@0 169 // The output signal bank
tomwalters@0 170 output_.Initialize(channel_count_, buffer_length_, sample_rate_);
tomwalters@0 171
tomwalters@0 172 // Reset the pole frequency to maximum
tomwalters@0 173 pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@0 174
tomwalters@0 175 for (int i = channel_count_ - 1; i > -1; --i) {
tomwalters@0 176 // Store the normalised pole frequncy
tomwalters@0 177 pole_frequencies_[i] = pole_frequency;
tomwalters@0 178
tomwalters@0 179 // Calculate the real pole frequency from the normalised pole frequency
tomwalters@0 180 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
tomwalters@0 181
tomwalters@0 182 // Store the real pole frequency as the 'centre frequency' of the filterbank
tomwalters@0 183 // channel
tomwalters@0 184 output_.set_centre_frequency(i, frequency);
tomwalters@0 185
tomwalters@0 186 // From PZFC_Small_Signal_Params.m { From PZFC_Params.m {
tomwalters@0 187 float DpndF = ERBTools::Freq2ERB(frequency)
tomwalters@0 188 / ERBTools::Freq2ERB(1000.0f) - 1.0f;
tomwalters@0 189
tomwalters@0 190 float p[8]; // Parameters (short name for ease of reading)
tomwalters@0 191
tomwalters@0 192 // Use parameter_values to recover the parameter values for this frequency
tomwalters@0 193 for (int param = 0; param < 7; ++param)
tomwalters@0 194 p[param] = parameter_values[param * 3]
tomwalters@0 195 + parameter_values[param * 3 + 1] * DpndF
tomwalters@0 196 + parameter_values[param * 3 + 2] * DpndF * DpndF;
tomwalters@0 197
tomwalters@0 198 // Calculate the final parameter
tomwalters@0 199 p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f);
tomwalters@0 200 if (p[7] < 0.2f)
tomwalters@0 201 p[7] = 0.2f;
tomwalters@0 202
tomwalters@0 203 // Nominal bandwidth at this frequency
tomwalters@0 204 float fERBw = ERBTools::Freq2ERBw(frequency);
tomwalters@0 205
tomwalters@0 206 // Pole bandwidth
tomwalters@0 207 float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2)
tomwalters@0 208 * pow(p[4], 0.5f);
tomwalters@0 209
tomwalters@0 210 // Pole damping
tomwalters@0 211 float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2));
tomwalters@0 212
tomwalters@0 213 // Store the pole damping
tomwalters@0 214 pole_dampings_[i] = pole_damping;
tomwalters@0 215
tomwalters@0 216 // Zero bandwidth
tomwalters@0 217 float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2)
tomwalters@0 218 * pow(p[4], 0.5f);
tomwalters@0 219
tomwalters@0 220 // Zero frequency
tomwalters@0 221 float zero_frequency = p[5] * pole_frequency;
tomwalters@0 222
tomwalters@0 223 if (zero_frequency > M_PI)
tomwalters@0 224 LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency "
tomwalters@0 225 "in ModulePZFC(), continuing anyway but results may not "
tomwalters@0 226 "be accurate."));
tomwalters@0 227
tomwalters@0 228 // Zero damping
tomwalters@0 229 float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2));
tomwalters@0 230
tomwalters@0 231 // Impulse-invariance mapping
tomwalters@0 232 float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2));
tomwalters@0 233 float fZRho = exp(-fZDamp * zero_frequency);
tomwalters@0 234
tomwalters@0 235 // Direct-form coefficients
tomwalters@0 236 float fA1 = -2.0f * fZRho * cos(fZTheta);
tomwalters@0 237 float fA2 = fZRho * fZRho;
tomwalters@0 238
tomwalters@0 239 // Normalised to unity gain at DC
tomwalters@0 240 float fASum = 1.0f + fA1 + fA2;
tomwalters@0 241 za0_[i] = 1.0f / fASum;
tomwalters@0 242 za1_[i] = fA1 / fASum;
tomwalters@0 243 za2_[i] = fA2 / fASum;
tomwalters@0 244
tomwalters@0 245 // Subtract step factor (1/n2) times current bandwidth from the pole
tomwalters@0 246 // frequency
tomwalters@0 247 pole_frequency -= ((1.0f / p[4])
tomwalters@0 248 * (fERBw * (2.0f * M_PI) / sample_rate_));
tomwalters@0 249 }
tomwalters@0 250 return true;
tomwalters@0 251 }
tomwalters@0 252
tomwalters@0 253 bool ModulePZFC::SetPZBankCoeffs() {
tomwalters@0 254 /*! \todo Re-implement the alternative parameter settings
tomwalters@0 255 */
tomwalters@0 256 if (!SetPZBankCoeffsERBFitted())
tomwalters@0 257 return false;
tomwalters@0 258
tomwalters@0 259 /*! \todo Make fMindamp and fMaxdamp user-settable?
tomwalters@0 260 */
tomwalters@0 261 mindamp_ = 0.18f;
tomwalters@0 262 maxdamp_ = 0.4f;
tomwalters@0 263
tomwalters@0 264 rmin_.resize(channel_count_);
tomwalters@0 265 rmax_.resize(channel_count_);
tomwalters@0 266 xmin_.resize(channel_count_);
tomwalters@0 267 xmax_.resize(channel_count_);
tomwalters@0 268
tomwalters@0 269 for (int c = 0; c < channel_count_; ++c) {
tomwalters@0 270 // Calculate maximum and minimum damping options
tomwalters@0 271 rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]);
tomwalters@0 272 rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]);
tomwalters@0 273
tomwalters@0 274 xmin_[c] = rmin_[c] * cos(pole_frequencies_[c]
tomwalters@0 275 * pow((1-pow(mindamp_, 2)), 0.5f));
tomwalters@0 276 xmax_[c] = rmax_[c] * cos(pole_frequencies_[c]
tomwalters@0 277 * pow((1-pow(maxdamp_, 2)), 0.5f));
tomwalters@0 278 }
tomwalters@0 279
tomwalters@0 280 // Set up AGC parameters
tomwalters@0 281 agc_stage_count_ = 4;
tomwalters@0 282 agc_epsilons_.resize(agc_stage_count_);
tomwalters@0 283 agc_epsilons_[0] = 0.0064f;
tomwalters@0 284 agc_epsilons_[1] = 0.0016f;
tomwalters@0 285 agc_epsilons_[2] = 0.0004f;
tomwalters@0 286 agc_epsilons_[3] = 0.0001f;
tomwalters@0 287
tomwalters@0 288 agc_gains_.resize(agc_stage_count_);
tomwalters@0 289 agc_gains_[0] = 1.0f;
tomwalters@0 290 agc_gains_[1] = 1.4f;
tomwalters@0 291 agc_gains_[2] = 2.0f;
tomwalters@0 292 agc_gains_[3] = 2.8f;
tomwalters@0 293
tomwalters@0 294 float mean_agc_gain = 0.0f;
tomwalters@0 295 for (int c = 0; c < agc_stage_count_; ++c)
tomwalters@0 296 mean_agc_gain += agc_gains_[c];
tomwalters@0 297 mean_agc_gain /= static_cast<float>(agc_stage_count_);
tomwalters@0 298
tomwalters@0 299 for (int c = 0; c < agc_stage_count_; ++c)
tomwalters@0 300 agc_gains_[c] /= mean_agc_gain;
tomwalters@0 301
tomwalters@0 302 return true;
tomwalters@0 303 }
tomwalters@0 304
tomwalters@0 305 void ModulePZFC::AGCDampStep() {
tomwalters@0 306 if (detect_.size() == 0) {
tomwalters@0 307 // If detect_ is not initialised, it means that the AGC is not set up.
tomwalters@0 308 // Set up now.
tomwalters@0 309 /*! \todo Make a separate InitAGC function which does this.
tomwalters@0 310 */
tomwalters@44 311 detect_.clear();
tomwalters@44 312 float detect_zero = DetectFun(0.0f);
tomwalters@44 313 detect_.resize(channel_count_, detect_zero);
tomwalters@0 314
tomwalters@0 315 for (int c = 0; c < channel_count_; c++)
tomwalters@0 316 for (int st = 0; st < agc_stage_count_; st++)
tomwalters@0 317 agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]);
tomwalters@0 318 }
tomwalters@0 319
tomwalters@0 320 float fAGCEpsLeft = 0.3f;
tomwalters@0 321 float fAGCEpsRight = 0.3f;
tomwalters@0 322
tomwalters@0 323 for (int c = channel_count_ - 1; c > -1; --c) {
tomwalters@0 324 for (int st = 0; st < agc_stage_count_; ++st) {
tomwalters@0 325 // This bounds checking is ugly and wasteful, and in an inner loop.
tomwalters@0 326 // If this algorithm is slow, this is why!
tomwalters@0 327 /*! \todo Proper non-ugly bounds checking in AGCDampStep()
tomwalters@0 328 */
tomwalters@0 329 float fPrevAGCState;
tomwalters@0 330 float fCurrAGCState;
tomwalters@0 331 float fNextAGCState;
tomwalters@0 332
tomwalters@0 333 if (c < channel_count_ - 1)
tomwalters@0 334 fPrevAGCState = agc_state_[c + 1][st];
tomwalters@0 335 else
tomwalters@0 336 fPrevAGCState = agc_state_[c][st];
tomwalters@0 337
tomwalters@0 338 fCurrAGCState = agc_state_[c][st];
tomwalters@0 339
tomwalters@0 340 if (c > 0)
tomwalters@0 341 fNextAGCState = agc_state_[c - 1][st];
tomwalters@0 342 else
tomwalters@0 343 fNextAGCState = agc_state_[c][st];
tomwalters@0 344
tomwalters@0 345 // Spatial smoothing
tomwalters@0 346 /*! \todo Something odd is going on here
tomwalters@0 347 * I think this line is not quite right.
tomwalters@0 348 */
tomwalters@0 349 float agc_avg = fAGCEpsLeft * fPrevAGCState
tomwalters@0 350 + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState
tomwalters@0 351 + fAGCEpsRight * fNextAGCState;
tomwalters@0 352 // Temporal smoothing
tomwalters@0 353 agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st])
tomwalters@0 354 + agc_epsilons_[st] * detect_[c] * agc_gains_[st];
tomwalters@0 355 }
tomwalters@0 356 }
tomwalters@0 357
tomwalters@44 358 float offset = 1.0f - agc_factor_ * DetectFun(0.0f);
tomwalters@0 359
tomwalters@0 360 for (int i = 0; i < channel_count_; ++i) {
tomwalters@0 361 float fAGCStateMean = 0.0f;
tomwalters@0 362 for (int j = 0; j < agc_stage_count_; ++j)
tomwalters@0 363 fAGCStateMean += agc_state_[i][j];
tomwalters@0 364
tomwalters@0 365 fAGCStateMean /= static_cast<float>(agc_stage_count_);
tomwalters@0 366
tomwalters@0 367 pole_damps_mod_[i] = pole_dampings_[i] *
tomwalters@44 368 (offset + agc_factor_ * fAGCStateMean);
tomwalters@0 369 }
tomwalters@0 370 }
tomwalters@0 371
tomwalters@0 372 float ModulePZFC::DetectFun(float fIN) {
tomwalters@0 373 if (fIN < 0.0f)
tomwalters@0 374 fIN = 0.0f;
tomwalters@0 375 float fDetect = Minimum(1.0f, fIN);
tomwalters@0 376 float fA = 0.25f;
tomwalters@0 377 return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f);
tomwalters@0 378 }
tomwalters@0 379
tomwalters@0 380 inline float ModulePZFC::Minimum(float a, float b) {
tomwalters@0 381 if (a < b)
tomwalters@0 382 return a;
tomwalters@0 383 else
tomwalters@0 384 return b;
tomwalters@0 385 }
tomwalters@0 386
tomwalters@0 387 void ModulePZFC::Process(const SignalBank& input) {
tomwalters@0 388 // Set the start time of the output buffer
tomwalters@0 389 output_.set_start_time(input.start_time());
tomwalters@0 390
tomwalters@44 391 for (int s = 0; s < input.buffer_length(); ++s) {
tomwalters@44 392 float input_sample = input.sample(0, s);
tomwalters@0 393
tomwalters@0 394 // Lowpass filter the input with a zero at PI
tomwalters@44 395 input_sample = 0.5f * input_sample + 0.5f * last_input_;
tomwalters@44 396 last_input_ = input.sample(0, s);
tomwalters@0 397
tomwalters@44 398 inputs_[channel_count_ - 1] = input_sample;
tomwalters@0 399 for (int c = 0; c < channel_count_ - 1; ++c)
tomwalters@0 400 inputs_[c] = previous_out_[c + 1];
tomwalters@0 401
tomwalters@0 402 // PZBankStep2
tomwalters@0 403 // to save a bunch of divides
tomwalters@0 404 float damp_rate = 1.0f / (maxdamp_ - mindamp_);
tomwalters@0 405
tomwalters@0 406 for (int c = channel_count_ - 1; c > -1; --c) {
tomwalters@44 407 float interp_factor = (pole_damps_mod_[c] - mindamp_) * damp_rate;
tomwalters@0 408
tomwalters@0 409 float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor;
tomwalters@0 410 float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor;
tomwalters@0 411
tomwalters@0 412 // optional improvement to constellation adds a bit to r
tomwalters@0 413 float fd = pole_frequencies_[c] * pole_damps_mod_[c];
tomwalters@0 414 // quadratic for small values, then linear
tomwalters@0 415 r = r + 0.25f * fd * Minimum(0.05f, fd);
tomwalters@0 416
tomwalters@0 417 float zb1 = -2.0f * x;
tomwalters@0 418 float zb2 = r * r;
tomwalters@0 419
tomwalters@0 420 /* canonic poles but with input provided where unity DC gain is assured
tomwalters@0 421 * (mean value of state is always equal to mean value of input)
tomwalters@0 422 */
tomwalters@0 423 float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1
tomwalters@0 424 - (state_2_[c] - inputs_[c]) * zb2;
tomwalters@0 425
tomwalters@0 426 // canonic zeros part as before:
tomwalters@0 427 float output = za0_[c] * new_state + za1_[c] * state_1_[c]
tomwalters@0 428 + za2_[c] * state_2_[c];
tomwalters@0 429
tomwalters@0 430 // cubic compression nonlinearity
tomwalters@44 431 output -= 0.0001f * pow(output, 3);
tomwalters@0 432
tomwalters@44 433 output_.set_sample(c, s, output);
tomwalters@0 434 detect_[c] = DetectFun(output);
tomwalters@0 435 state_2_[c] = state_1_[c];
tomwalters@0 436 state_1_[c] = new_state;
tomwalters@0 437 }
tomwalters@0 438
tomwalters@0 439 if (do_agc_step_)
tomwalters@0 440 AGCDampStep();
tomwalters@0 441
tomwalters@0 442 for (int c = 0; c < channel_count_; ++c)
tomwalters@44 443 previous_out_[c] = output_[c][s];
tomwalters@0 444 }
tomwalters@0 445 PushOutput();
tomwalters@0 446 }
tomwalters@0 447 } // namespace aimc