annotate src/Modules/SSI/ModuleSSI.cc @ 45:c5f5e9569863

- Modified licence from GPL 3 to Apache v2
author tomwalters
date Tue, 30 Mar 2010 22:06:24 +0000
parents 74196ff1cb98
children e914b02b31b0
rev   line source
tomwalters@12 1 // Copyright 2010, Thomas Walters
tomwalters@12 2 //
tomwalters@12 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@12 4 // http://www.acousticscale.org/AIMC
tomwalters@12 5 //
tomwalters@45 6 // Licensed under the Apache License, Version 2.0 (the "License");
tomwalters@45 7 // you may not use this file except in compliance with the License.
tomwalters@45 8 // You may obtain a copy of the License at
tomwalters@12 9 //
tomwalters@45 10 // http://www.apache.org/licenses/LICENSE-2.0
tomwalters@12 11 //
tomwalters@45 12 // Unless required by applicable law or agreed to in writing, software
tomwalters@45 13 // distributed under the License is distributed on an "AS IS" BASIS,
tomwalters@45 14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tomwalters@45 15 // See the License for the specific language governing permissions and
tomwalters@45 16 // limitations under the License.
tomwalters@12 17
tomwalters@12 18 /*!
tomwalters@12 19 * \author Thomas Walters <tom@acousticscale.org>
tomwalters@12 20 * \date created 2010/02/19
tomwalters@12 21 * \version \$Id$
tomwalters@12 22 */
tomwalters@12 23
tomwalters@15 24 #include <cmath>
tomwalters@15 25
tomwalters@12 26 #include "Modules/SSI/ModuleSSI.h"
tomwalters@12 27
tomwalters@12 28 namespace aimc {
tomwalters@12 29 ModuleSSI::ModuleSSI(Parameters *params) : Module(params) {
tomwalters@12 30 module_description_ = "Size-shape image (aka the 'sscAI')";
tomwalters@12 31 module_identifier_ = "ssi";
tomwalters@12 32 module_type_ = "ssi";
tomwalters@12 33 module_version_ = "$Id$";
tomwalters@12 34
tomwalters@32 35 // Cut off the SSI at the end of the first cycle
tomwalters@32 36 do_pitch_cutoff_ = parameters_->DefaultBool("ssi.pitch_cutoff", false);
tomwalters@32 37
tomwalters@32 38 // Weight the values in each channel more strongly if the channel was
tomwalters@32 39 // truncated due to the pitch cutoff. This ensures that the same amount of
tomwalters@32 40 // energy remains in the SSI spectral profile
tomwalters@32 41 weight_by_cutoff_ = parameters_->DefaultBool("ssi.weight_by_cutoff", false);
tomwalters@32 42
tomwalters@32 43 // Weight the values in each channel more strongly if the channel was
tomwalters@32 44 // scaled such that the end goes off the edge of the computed SSI.
tomwalters@32 45 // Again, this ensures that the overall energy of the spectral profile
tomwalters@32 46 // remains the same.
tomwalters@32 47 weight_by_scaling_ = parameters_->DefaultBool("ssi.weight_by_scaling",
tomwalters@32 48 false);
tomwalters@32 49
tomwalters@32 50 // Time from the zero-lag line of the SAI from which to start searching
tomwalters@32 51 // for a maximum in the input SAI's temporal profile.
tomwalters@32 52 pitch_search_start_ms_ = parameters_->DefaultFloat(
tomwalters@32 53 "ssi.pitch_search_start_ms", 2.0f);
tomwalters@32 54
tomwalters@32 55 // Total width in cycles of the whole SSI
tomwalters@32 56 ssi_width_cycles_ = parameters_->DefaultFloat("ssi.width_cycles", 10.0f);
tomwalters@32 57
tomwalters@32 58 // Set to true to make the cycles axis logarithmic (ie indexing by gamma
tomwalters@32 59 // rather than by cycles)
tomwalters@32 60 log_cycles_axis_ = parameters_->DefaultBool("ssi.log_cycles_axis", true);
tomwalters@32 61
tomwalters@32 62 // The centre frequency of the channel which will just fill the complete
tomwalters@32 63 // width of the SSI buffer
tomwalters@32 64 pivot_cf_ = parameters_->DefaultFloat("ssi.pivot_cf", 1000.0f);
tomwalters@12 65 }
tomwalters@12 66
tomwalters@12 67 ModuleSSI::~ModuleSSI() {
tomwalters@12 68 }
tomwalters@12 69
tomwalters@12 70 bool ModuleSSI::InitializeInternal(const SignalBank &input) {
tomwalters@12 71 // Copy the parameters of the input signal bank into internal variables, so
tomwalters@12 72 // that they can be checked later.
tomwalters@12 73 sample_rate_ = input.sample_rate();
tomwalters@12 74 buffer_length_ = input.buffer_length();
tomwalters@12 75 channel_count_ = input.channel_count();
tomwalters@12 76
tomwalters@32 77 ssi_width_samples_ = sample_rate_ * ssi_width_cycles_ / pivot_cf_;
tomwalters@15 78 if (ssi_width_samples_ > buffer_length_) {
tomwalters@15 79 ssi_width_samples_ = buffer_length_;
tomwalters@32 80 float cycles = ssi_width_samples_ * pivot_cf_ / sample_rate_;
tomwalters@15 81 LOG_INFO(_T("Requested SSI width of %f cycles is too long for the "
tomwalters@15 82 "input buffer length of %d samples. The SSI will be "
tomwalters@15 83 "truncated at %d samples wide. This corresponds to a width "
tomwalters@15 84 "of %f cycles."), ssi_width_cycles_, buffer_length_,
tomwalters@15 85 ssi_width_samples_, cycles);
tomwalters@15 86 ssi_width_cycles_ = cycles;
tomwalters@15 87 }
tomwalters@15 88 output_.Initialize(channel_count_, ssi_width_samples_, sample_rate_);
tomwalters@12 89 return true;
tomwalters@12 90 }
tomwalters@12 91
tomwalters@12 92 void ModuleSSI::ResetInternal() {
tomwalters@12 93 }
tomwalters@12 94
tomwalters@32 95 int ModuleSSI::ExtractPitchIndex(const SignalBank &input) const {
tomwalters@32 96 // Generate temporal profile of the SAI
tomwalters@32 97 vector<float> sai_temporal_profile(buffer_length_, 0.0f);
tomwalters@32 98 for (int i = 0; i < buffer_length_; ++i) {
tomwalters@32 99 float val = 0.0f;
tomwalters@32 100 for (int ch = 0; ch < channel_count_; ++ch) {
tomwalters@32 101 val += input.sample(ch, i);
tomwalters@32 102 }
tomwalters@32 103 sai_temporal_profile[i] = val;
tomwalters@32 104 }
tomwalters@32 105
tomwalters@32 106 // Find pitch value
tomwalters@32 107 int start_sample = floor(pitch_search_start_ms_ * sample_rate_ / 1000.0f);
tomwalters@32 108 int max_idx = 0;
tomwalters@32 109 float max_val = 0.0f;
tomwalters@32 110 for (int i = start_sample; i < buffer_length_; ++i) {
tomwalters@32 111 if (sai_temporal_profile[i] > max_val) {
tomwalters@32 112 max_idx = i;
tomwalters@32 113 max_val = sai_temporal_profile[i];
tomwalters@32 114 }
tomwalters@32 115 }
tomwalters@32 116 return max_idx;
tomwalters@32 117 }
tomwalters@32 118
tomwalters@12 119 void ModuleSSI::Process(const SignalBank &input) {
tomwalters@12 120 // Check to see if the module has been initialized. If not, processing
tomwalters@12 121 // should not continue.
tomwalters@12 122 if (!initialized_) {
tomwalters@13 123 LOG_ERROR(_T("Module %s not initialized."), module_identifier_.c_str());
tomwalters@12 124 return;
tomwalters@12 125 }
tomwalters@12 126
tomwalters@12 127 // Check that ths input this time is the same as the input passed to
tomwalters@12 128 // Initialize()
tomwalters@12 129 if (buffer_length_ != input.buffer_length()
tomwalters@12 130 || channel_count_ != input.channel_count()) {
tomwalters@12 131 LOG_ERROR(_T("Mismatch between input to Initialize() and input to "
tomwalters@13 132 "Process() in module %s."), module_identifier_.c_str());
tomwalters@12 133 return;
tomwalters@12 134 }
tomwalters@12 135
tomwalters@15 136 output_.set_start_time(input.start_time());
tomwalters@12 137
tomwalters@32 138 int pitch_index = buffer_length_ - 1;
tomwalters@32 139 if (do_pitch_cutoff_) {
tomwalters@32 140 pitch_index = ExtractPitchIndex(input);
tomwalters@32 141 }
tomwalters@32 142
tomwalters@15 143 for (int ch = 0; ch < channel_count_; ++ch) {
tomwalters@32 144 float centre_frequency = input.centre_frequency(ch);
tomwalters@15 145 // Copy the buffer from input to output, addressing by h-value
tomwalters@15 146 for (int i = 0; i < ssi_width_samples_; ++i) {
tomwalters@32 147 float h;
tomwalters@32 148 float cycle_samples = sample_rate_ / centre_frequency;
tomwalters@32 149 if (log_cycles_axis_) {
tomwalters@32 150 float gamma_min = -1.0f;
tomwalters@32 151 float gamma_max = log2(ssi_width_cycles_);
tomwalters@32 152 float gamma = gamma_min + (gamma_max - gamma_min)
tomwalters@32 153 * static_cast<float>(i)
tomwalters@32 154 / static_cast<float>(ssi_width_samples_);
tomwalters@32 155 h = pow(2.0f, gamma);
tomwalters@32 156 } else {
tomwalters@32 157 h = static_cast<float>(i) * ssi_width_cycles_
tomwalters@32 158 / static_cast<float>(ssi_width_samples_);
tomwalters@32 159 }
tomwalters@12 160
tomwalters@15 161 // The index into the input array is a floating-point number, which is
tomwalters@15 162 // split into a whole part and a fractional part. The whole part and
tomwalters@15 163 // fractional part are found, and are used to linearly interpolate
tomwalters@15 164 // between input samples to yield an output sample.
tomwalters@15 165 double whole_part;
tomwalters@15 166 float frac_part = modf(h * cycle_samples, &whole_part);
tomwalters@32 167 int sample = floor(whole_part);
tomwalters@32 168
tomwalters@32 169 float weight = 1.0f;
tomwalters@32 170
tomwalters@32 171 int cutoff_index = buffer_length_ - 1;
tomwalters@32 172 if (do_pitch_cutoff_) {
tomwalters@32 173 if (pitch_index < cutoff_index) {
tomwalters@32 174 if (weight_by_cutoff_) {
tomwalters@32 175 weight *= static_cast<float>(buffer_length_)
tomwalters@32 176 / static_cast<float>(pitch_index);
tomwalters@32 177 }
tomwalters@32 178 cutoff_index = pitch_index;
tomwalters@32 179 }
tomwalters@32 180 }
tomwalters@32 181
tomwalters@32 182 if (weight_by_scaling_) {
tomwalters@32 183 if (centre_frequency > pivot_cf_) {
tomwalters@32 184 weight *= (centre_frequency / pivot_cf_);
tomwalters@32 185 }
tomwalters@32 186 }
tomwalters@15 187
tomwalters@15 188 float val;
tomwalters@32 189 if (sample < cutoff_index) {
tomwalters@15 190 float curr_sample = input.sample(ch, sample);
tomwalters@15 191 float next_sample = input.sample(ch, sample + 1);
tomwalters@32 192 val = weight * (curr_sample
tomwalters@32 193 + frac_part * (next_sample - curr_sample));
tomwalters@15 194 } else {
tomwalters@36 195 val = 0.0f;
tomwalters@15 196 }
tomwalters@15 197 output_.set_sample(ch, i, val);
tomwalters@15 198 }
tomwalters@15 199 }
tomwalters@12 200 PushOutput();
tomwalters@12 201 }
tomwalters@12 202 } // namespace aimc
tomwalters@12 203