annotate src/Modules/Features/ModuleGaussians_test.py @ 45:c5f5e9569863

- Modified licence from GPL 3 to Apache v2
author tomwalters
date Tue, 30 Mar 2010 22:06:24 +0000
parents bd370910aa05
children
rev   line source
tomwalters@1 1 #!/usr/bin/env python
tomwalters@1 2 # encoding: utf-8
tomwalters@1 3 #
tomwalters@1 4 # AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@1 5 # http://www.acousticscale.org/AIMC
tomwalters@1 6 #
tomwalters@45 7 # Licensed under the Apache License, Version 2.0 (the "License");
tomwalters@45 8 # you may not use this file except in compliance with the License.
tomwalters@45 9 # You may obtain a copy of the License at
tomwalters@1 10 #
tomwalters@45 11 # http://www.apache.org/licenses/LICENSE-2.0
tomwalters@1 12 #
tomwalters@45 13 # Unless required by applicable law or agreed to in writing, software
tomwalters@45 14 # distributed under the License is distributed on an "AS IS" BASIS,
tomwalters@45 15 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tomwalters@45 16 # See the License for the specific language governing permissions and
tomwalters@45 17 # limitations under the License.
tomwalters@1 18 """
tomwalters@1 19 ModuleGaussians_test.py
tomwalters@1 20
tomwalters@1 21 Created by Thomas Walters on 2010-02-15.
tomwalters@1 22 Copyright 2010 Thomas Walters <tom@acousticscale.org>
tomwalters@1 23 Test for the Gaussians module. Runs a number of pre-computed SAI profiles
tomwalters@3 24 through the module, and tests them against the saved output from the
tomwalters@1 25 MATLAB rubber_GMM code.
tomwalters@1 26 """
tomwalters@1 27
tomwalters@1 28 import aimc
tomwalters@2 29 from scipy import io
tomwalters@1 30
tomwalters@1 31 def main():
tomwalters@1 32 data_file = "src/Modules/Features/testdata/aa153.0p108.1s100.0t+000itd.mat"
tomwalters@2 33 data = io.loadmat(data_file)
tomwalters@2 34
tomwalters@2 35 # The margin of error allowed between the returned values from AIM-C and
tomwalters@2 36 # the stored MATLAB values.
tomwalters@11 37 epsilon = 0.00001;
tomwalters@1 38
tomwalters@1 39 given_profiles = data["Templates"]
tomwalters@1 40 matlab_features = data["feature"]
tomwalters@1 41
tomwalters@2 42 (profile_count, channel_count) = given_profiles.shape
tomwalters@1 43
tomwalters@2 44 profile_sig = aimc.SignalBank()
tomwalters@2 45 profile_sig.Initialize(channel_count, 1, 44100)
tomwalters@2 46 parameters = aimc.Parameters()
tomwalters@2 47 mod_gauss = aimc.ModuleGaussians(parameters)
tomwalters@2 48 mod_gauss.Initialize(profile_sig)
tomwalters@1 49
tomwalters@2 50 correct_count = 0;
tomwalters@2 51 incorrect_count = 0;
tomwalters@2 52 for p in range(0, profile_count):
tomwalters@2 53 profile = given_profiles[p]
tomwalters@2 54 features = matlab_features[p]
tomwalters@2 55 for i in range(0, channel_count):
tomwalters@2 56 profile_sig.set_sample(i, 0, profile[i])
tomwalters@2 57 mod_gauss.Process(profile_sig)
tomwalters@2 58 out_sig = mod_gauss.GetOutputBank()
tomwalters@2 59 error = False;
tomwalters@2 60 for j in range(0, out_sig.channel_count()):
tomwalters@2 61 if (abs(out_sig.sample(j, 0) - features[j]) > epsilon):
tomwalters@2 62 error = True;
tomwalters@2 63 incorrect_count += 1;
tomwalters@2 64 else:
tomwalters@2 65 correct_count += 1;
tomwalters@2 66 if error:
tomwalters@2 67 print("Mismatch at profile %d" % (p))
tomwalters@2 68 print("AIM-C values: %f %f %f %f" % (out_sig.sample(0, 0), out_sig.sample(1, 0), out_sig.sample(2, 0), out_sig.sample(3, 0)))
tomwalters@2 69 print("MATLAB values: %f %f %f %f" % (features[0], features[1], features[2], features[3]))
tomwalters@2 70 print("")
tomwalters@2 71 percent_correct = 100 * correct_count / (correct_count + incorrect_count)
tomwalters@2 72 print("Total correct: %f percent" % (percent_correct))
tomwalters@2 73 if percent_correct == 100:
tomwalters@2 74 print("=== TEST PASSED ===")
tomwalters@2 75 else:
tomwalters@2 76 print("=== TEST FAILED! ===")
tomwalters@2 77
tomwalters@1 78 pass
tomwalters@1 79
tomwalters@1 80
tomwalters@1 81 if __name__ == '__main__':
tomwalters@1 82 main()