annotate src/Modules/BMM/ModuleGammatone.cc @ 19:a2dddc107d55

-Removed extraneous debug logging
author tomwalters
date Mon, 22 Feb 2010 12:45:05 +0000
parents 01eba86df030
children c5f5e9569863
rev   line source
tomwalters@4 1 // Copyright 2009-2010, Thomas Walters
tomwalters@4 2 //
tomwalters@4 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@4 4 // http://www.acousticscale.org/AIMC
tomwalters@4 5 //
tomwalters@4 6 // This program is free software: you can redistribute it and/or modify
tomwalters@4 7 // it under the terms of the GNU General Public License as published by
tomwalters@4 8 // the Free Software Foundation, either version 3 of the License, or
tomwalters@4 9 // (at your option) any later version.
tomwalters@4 10 //
tomwalters@4 11 // This program is distributed in the hope that it will be useful,
tomwalters@4 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
tomwalters@4 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
tomwalters@4 14 // GNU General Public License for more details.
tomwalters@4 15 //
tomwalters@4 16 // You should have received a copy of the GNU General Public License
tomwalters@4 17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
tomwalters@4 18
tomwalters@4 19 /*! \file
tomwalters@4 20 * \brief Slaney's gammatone filterbank
tomwalters@4 21 *
tomwalters@4 22 * \author Thomas Walters <tom@acousticscale.org>
tomwalters@4 23 * \date created 2009/11/13
tomwalters@4 24 * \version \$Id$
tomwalters@4 25 */
tomwalters@4 26
tomwalters@15 27 #include <cmath>
tomwalters@4 28 #include <complex>
tomwalters@5 29 #include "Support/ERBTools.h"
tomwalters@4 30
tomwalters@4 31 #include "Modules/BMM/ModuleGammatone.h"
tomwalters@4 32
tomwalters@4 33 namespace aimc {
tomwalters@5 34 using std::vector;
tomwalters@4 35 using std::complex;
tomwalters@4 36 ModuleGammatone::ModuleGammatone(Parameters *params) : Module(params) {
tomwalters@5 37 module_identifier_ = "gt";
tomwalters@4 38 module_type_ = "bmm";
tomwalters@4 39 module_description_ = "Gammatone filterbank (Slaney's IIR gammatone)";
tomwalters@4 40 module_version_ = "$Id$";
tomwalters@4 41
tomwalters@4 42 num_channels_ = parameters_->DefaultInt("gtfb.channel_count", 200);
tomwalters@4 43 min_frequency_ = parameters_->DefaultFloat("gtfb.min_frequency", 86.0f);
tomwalters@4 44 max_frequency_ = parameters_->DefaultFloat("gtfb.max_frequency", 16000.0f);
tomwalters@4 45 }
tomwalters@4 46
tomwalters@5 47 ModuleGammatone::~ModuleGammatone() {
tomwalters@5 48 }
tomwalters@5 49
tomwalters@5 50 void ModuleGammatone::ResetInternal() {
tomwalters@16 51 state_1_.resize(num_channels_);
tomwalters@16 52 state_2_.resize(num_channels_);
tomwalters@16 53 state_3_.resize(num_channels_);
tomwalters@16 54 state_4_.resize(num_channels_);
tomwalters@5 55 for (int i = 0; i < num_channels_; ++i) {
tomwalters@16 56 state_1_[i].resize(3, 0.0f);
tomwalters@16 57 state_2_[i].resize(3, 0.0f);
tomwalters@16 58 state_3_[i].resize(3, 0.0f);
tomwalters@16 59 state_4_[i].resize(3, 0.0f);
tomwalters@5 60 }
tomwalters@5 61 }
tomwalters@5 62
tomwalters@4 63 bool ModuleGammatone::InitializeInternal(const SignalBank& input) {
tomwalters@4 64 // Calculate number of channels, and centre frequencies
tomwalters@5 65 float erb_max = ERBTools::Freq2ERB(max_frequency_);
tomwalters@5 66 float erb_min = ERBTools::Freq2ERB(min_frequency_);
tomwalters@5 67 float delta_erb = (erb_max - erb_min) / (num_channels_ - 1);
tomwalters@5 68
tomwalters@5 69 centre_frequencies_.resize(num_channels_);
tomwalters@5 70 float erb_current = erb_min;
tomwalters@5 71
tomwalters@16 72 output_.Initialize(num_channels_,
tomwalters@16 73 input.buffer_length(),
tomwalters@16 74 input.sample_rate());
tomwalters@16 75
tomwalters@5 76 for (int i = 0; i < num_channels_; ++i) {
tomwalters@8 77 centre_frequencies_[i] = ERBTools::ERB2Freq(erb_current);
tomwalters@8 78 erb_current += delta_erb;
tomwalters@16 79 output_.set_centre_frequency(i, centre_frequencies_[i]);
tomwalters@5 80 }
tomwalters@4 81
tomwalters@16 82 a_.resize(num_channels_);
tomwalters@16 83 b1_.resize(num_channels_);
tomwalters@16 84 b2_.resize(num_channels_);
tomwalters@16 85 b3_.resize(num_channels_);
tomwalters@16 86 b4_.resize(num_channels_);
tomwalters@16 87 state_1_.resize(num_channels_);
tomwalters@16 88 state_2_.resize(num_channels_);
tomwalters@16 89 state_3_.resize(num_channels_);
tomwalters@16 90 state_4_.resize(num_channels_);
tomwalters@4 91
tomwalters@4 92 for (int ch = 0; ch < num_channels_; ++ch) {
tomwalters@16 93 double cf = centre_frequencies_[ch];
tomwalters@16 94 double erb = ERBTools::Freq2ERBw(cf);
tomwalters@18 95 // LOG_INFO("%e", erb);
tomwalters@4 96
tomwalters@4 97 // Sample interval
tomwalters@16 98 double dt = 1.0f / input.sample_rate();
tomwalters@4 99
tomwalters@4 100 // Bandwidth parameter
tomwalters@16 101 double b = 1.019f * 2.0f * M_PI * erb;
tomwalters@4 102
tomwalters@16 103 // The following expressions are derived in Apple TR #35, "An
tomwalters@8 104 // Efficient Implementation of the Patterson-Holdsworth Cochlear
tomwalters@16 105 // Filter Bank" and used in Malcolm Slaney's auditory toolbox, where he
tomwalters@16 106 // defines this alternaltive four stage cascade of second-order filters.
tomwalters@4 107
tomwalters@4 108 // Calculate the gain:
tomwalters@16 109 double cpt = cf * M_PI * dt;
tomwalters@16 110 complex<double> exponent(0.0, 2.0 * cpt);
tomwalters@16 111 complex<double> ec = exp(2.0 * exponent);
tomwalters@16 112 complex<double> two_cf_pi_t(2.0 * cpt, 0.0);
tomwalters@16 113 complex<double> two_pow(pow(2.0, (3.0 / 2.0)), 0.0);
tomwalters@18 114 complex<double> p1 = -2.0 * ec * dt;
tomwalters@18 115 complex<double> p2 = 2.0 * exp(-(b * dt) + exponent) * dt;
tomwalters@16 116 complex<double> b_dt(b * dt, 0.0);
tomwalters@4 117
tomwalters@16 118 double gain = abs(
tomwalters@18 119 (p1 + p2 * (cos(two_cf_pi_t) - sqrt(3.0 - two_pow) * sin(two_cf_pi_t)))
tomwalters@18 120 * (p1 + p2 * (cos(two_cf_pi_t) + sqrt(3.0 - two_pow) * sin(two_cf_pi_t)))
tomwalters@18 121 * (p1 + p2 * (cos(two_cf_pi_t) - sqrt(3.0 + two_pow) * sin(two_cf_pi_t)))
tomwalters@18 122 * (p1 + p2 * (cos(two_cf_pi_t) + sqrt(3.0 + two_pow) * sin(two_cf_pi_t)))
tomwalters@18 123 / pow((-2.0 / exp(2.0 * b_dt) - 2.0 * ec + 2.0 * (1.0 + ec)
tomwalters@18 124 / exp(b_dt)), 4));
tomwalters@19 125 // LOG_INFO("%e", gain);
tomwalters@4 126
tomwalters@4 127 // The filter coefficients themselves:
tomwalters@16 128 const int coeff_count = 3;
tomwalters@16 129 a_[ch].resize(coeff_count, 0.0f);
tomwalters@16 130 b1_[ch].resize(coeff_count, 0.0f);
tomwalters@16 131 b2_[ch].resize(coeff_count, 0.0f);
tomwalters@16 132 b3_[ch].resize(coeff_count, 0.0f);
tomwalters@16 133 b4_[ch].resize(coeff_count, 0.0f);
tomwalters@16 134 state_1_[ch].resize(coeff_count, 0.0f);
tomwalters@16 135 state_2_[ch].resize(coeff_count, 0.0f);
tomwalters@16 136 state_3_[ch].resize(coeff_count, 0.0f);
tomwalters@16 137 state_4_[ch].resize(coeff_count, 0.0f);
tomwalters@4 138
tomwalters@16 139 double B0 = dt;
tomwalters@16 140 double B2 = 0.0f;
tomwalters@4 141
tomwalters@16 142 double B11 = -(2.0f * dt * cos(2.0f * cf * M_PI * dt) / exp(b * dt)
tomwalters@16 143 + 2.0f * sqrt(3 + pow(2.0f, 1.5f)) * dt
tomwalters@16 144 * sin(2.0f * cf * M_PI * dt) / exp(b * dt)) / 2.0f;
tomwalters@16 145 double B12 = -(2.0f * dt * cos(2.0f * cf * M_PI * dt) / exp(b * dt)
tomwalters@16 146 - 2.0f * sqrt(3 + pow(2.0f, 1.5f)) * dt
tomwalters@16 147 * sin(2.0f * cf * M_PI * dt) / exp(b * dt)) / 2.0f;
tomwalters@16 148 double B13 = -(2.0f * dt * cos(2.0f * cf * M_PI * dt) / exp(b * dt)
tomwalters@16 149 + 2.0f * sqrt(3 - pow(2.0f, 1.5f)) * dt
tomwalters@16 150 * sin(2.0f * cf * M_PI * dt) / exp(b * dt)) / 2.0f;
tomwalters@16 151 double B14 = -(2.0f * dt * cos(2.0f * cf * M_PI * dt) / exp(b * dt)
tomwalters@16 152 - 2.0f * sqrt(3 - pow(2.0f, 1.5f)) * dt
tomwalters@17 153 * sin(2.0f * cf * M_PI * dt) / exp(b * dt)) / 2.0f;
tomwalters@16 154
tomwalters@16 155 a_[ch][0] = 1.0f;
tomwalters@16 156 a_[ch][1] = -2.0f * cos(2.0f * cf * M_PI * dt) / exp(b * dt);
tomwalters@16 157 a_[ch][2] = exp(-2.0f * b * dt);
tomwalters@16 158 b1_[ch][0] = B0 / gain;
tomwalters@16 159 b1_[ch][1] = B11 / gain;
tomwalters@16 160 b1_[ch][2] = B2 / gain;
tomwalters@16 161 b2_[ch][0] = B0;
tomwalters@16 162 b2_[ch][1] = B12;
tomwalters@16 163 b2_[ch][2] = B2;
tomwalters@16 164 b3_[ch][0] = B0;
tomwalters@16 165 b3_[ch][1] = B13;
tomwalters@16 166 b3_[ch][2] = B2;
tomwalters@16 167 b4_[ch][0] = B0;
tomwalters@16 168 b4_[ch][1] = B14;
tomwalters@16 169 b4_[ch][2] = B2;
tomwalters@4 170 }
tomwalters@5 171 return true;
tomwalters@4 172 }
tomwalters@5 173
tomwalters@5 174 void ModuleGammatone::Process(const SignalBank &input) {
tomwalters@5 175 output_.set_start_time(input.start_time());
tomwalters@5 176 int audio_channel = 0;
tomwalters@5 177
tomwalters@16 178 vector<vector<double> >::iterator b1 = b1_.begin();
tomwalters@16 179 vector<vector<double> >::iterator b2 = b2_.begin();
tomwalters@16 180 vector<vector<double> >::iterator b3 = b3_.begin();
tomwalters@16 181 vector<vector<double> >::iterator b4 = b4_.begin();
tomwalters@16 182 vector<vector<double> >::iterator a = a_.begin();
tomwalters@16 183 vector<vector<double> >::iterator s1 = state_1_.begin();
tomwalters@16 184 vector<vector<double> >::iterator s2 = state_2_.begin();
tomwalters@16 185 vector<vector<double> >::iterator s3 = state_3_.begin();
tomwalters@16 186 vector<vector<double> >::iterator s4 = state_4_.begin();
tomwalters@5 187
tomwalters@16 188 // Temporary storage between filter stages
tomwalters@16 189 vector<double> out(input.buffer_length());
tomwalters@16 190 for (int ch = 0; ch < num_channels_;
tomwalters@16 191 ++ch, ++b1, ++b2, ++b3, ++b4, ++a, ++s1, ++s2, ++s3, ++s4) {
tomwalters@5 192 for (int i = 0; i < input.buffer_length(); ++i) {
tomwalters@8 193 // Direct-form-II IIR filter
tomwalters@16 194 double in = input.sample(audio_channel, i);
tomwalters@16 195 out[i] = (*b1)[0] * in + (*s1)[0];
tomwalters@16 196 for (unsigned int stage = 1; stage < s1->size(); ++stage)
tomwalters@16 197 (*s1)[stage - 1] = (*b1)[stage] * in
tomwalters@16 198 - (*a)[stage] * out[i] + (*s1)[stage];
tomwalters@16 199 }
tomwalters@16 200 for (int i = 0; i < input.buffer_length(); ++i) {
tomwalters@16 201 // Direct-form-II IIR filter
tomwalters@16 202 double in = out[i];
tomwalters@16 203 out[i] = (*b2)[0] * in + (*s2)[0];
tomwalters@16 204 for (unsigned int stage = 1; stage < s2->size(); ++stage)
tomwalters@16 205 (*s2)[stage - 1] = (*b2)[stage] * in
tomwalters@16 206 - (*a)[stage] * out[i] + (*s2)[stage];
tomwalters@16 207 }
tomwalters@16 208 for (int i = 0; i < input.buffer_length(); ++i) {
tomwalters@16 209 // Direct-form-II IIR filter
tomwalters@16 210 double in = out[i];
tomwalters@16 211 out[i] = (*b3)[0] * in + (*s3)[0];
tomwalters@16 212 for (unsigned int stage = 1; stage < s3->size(); ++stage)
tomwalters@16 213 (*s3)[stage - 1] = (*b3)[stage] * in
tomwalters@16 214 - (*a)[stage] * out[i] + (*s3)[stage];
tomwalters@16 215 }
tomwalters@16 216 for (int i = 0; i < input.buffer_length(); ++i) {
tomwalters@16 217 // Direct-form-II IIR filter
tomwalters@16 218 double in = out[i];
tomwalters@16 219 out[i] = (*b4)[0] * in + (*s4)[0];
tomwalters@16 220 for (unsigned int stage = 1; stage < s4->size(); ++stage)
tomwalters@16 221 (*s4)[stage - 1] = (*b4)[stage] * in
tomwalters@16 222 - (*a)[stage] * out[i] + (*s4)[stage];
tomwalters@16 223 output_.set_sample(ch, i, out[i]);
tomwalters@5 224 }
tomwalters@5 225 }
tomwalters@5 226 PushOutput();
tomwalters@5 227 }
tomwalters@5 228
tomwalters@8 229 } // namespace aimc