annotate src/Modules/Features/ModuleGaussians.cc @ 0:582cbe817f2c

- Initial add of support code and modules. Not everything is working yet.
author tomwalters
date Fri, 12 Feb 2010 12:31:23 +0000
parents
children bc394a985042
rev   line source
tomwalters@0 1 // Copyright 2008-2010, Thomas Walters
tomwalters@0 2 //
tomwalters@0 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@0 4 // http://www.acousticscale.org/AIMC
tomwalters@0 5 //
tomwalters@0 6 // This program is free software: you can redistribute it and/or modify
tomwalters@0 7 // it under the terms of the GNU General Public License as published by
tomwalters@0 8 // the Free Software Foundation, either version 3 of the License, or
tomwalters@0 9 // (at your option) any later version.
tomwalters@0 10 //
tomwalters@0 11 // This program is distributed in the hope that it will be useful,
tomwalters@0 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
tomwalters@0 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
tomwalters@0 14 // GNU General Public License for more details.
tomwalters@0 15 //
tomwalters@0 16 // You should have received a copy of the GNU General Public License
tomwalters@0 17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
tomwalters@0 18
tomwalters@0 19 /*! \file
tomwalters@0 20 * \brief Gaussian features - based on MATLAB code by Christian Feldbauer
tomwalters@0 21 */
tomwalters@0 22
tomwalters@0 23 /*!
tomwalters@0 24 * \author Tom Walters <tcw24@cam.ac.uk>
tomwalters@0 25 * \date created 2008/06/23
tomwalters@0 26 * \version \$Id: ModuleGaussians.cc 2 2010-02-02 12:59:50Z tcw $
tomwalters@0 27 */
tomwalters@0 28
tomwalters@0 29 #include <math.h>
tomwalters@0 30
tomwalters@0 31 #include "Modules/Features/ModuleGaussians.h"
tomwalters@0 32 #include "Support/Common.h"
tomwalters@0 33
tomwalters@0 34 namespace aimc {
tomwalters@0 35 ModuleGaussians::ModuleGaussians(Parameters *pParam)
tomwalters@0 36 : Module(pParam) {
tomwalters@0 37 // Set module metadata
tomwalters@0 38 module_description_ = "Gaussian Fitting to SSI profile";
tomwalters@0 39 module_identifier_ = "gaussians"; // unique identifier for the module
tomwalters@0 40 module_type_ = "features";
tomwalters@0 41 module_version_ = "$Id: ModuleGaussians.cc 2 2010-02-02 12:59:50Z tcw $";
tomwalters@0 42
tomwalters@0 43 parameters_->SetDefault("features.gaussians.ncomp", "4");
tomwalters@0 44 m_iParamNComp = parameters_->GetInt("features.gaussians.ncomp");
tomwalters@0 45
tomwalters@0 46 parameters_->SetDefault("features.gaussians.var", "115.0");
tomwalters@0 47 m_fParamVar = parameters_->GetFloat("features.gaussians.var");
tomwalters@0 48
tomwalters@0 49 parameters_->SetDefault("features.gaussians.posterior_exp", "6.0");
tomwalters@0 50 m_fParamPosteriorExp =
tomwalters@0 51 parameters_->GetFloat("features.gaussians.posterior_exp");
tomwalters@0 52
tomwalters@0 53 parameters_->SetDefault("features.gaussians.maxit", "250");
tomwalters@0 54 m_iParamMaxIt = parameters_->GetInt("features.gaussians.maxit");
tomwalters@0 55
tomwalters@0 56 parameters_->SetDefault("features.gaussians.priors_converged", "1e-7");
tomwalters@0 57 m_fParamPriorsConverged =
tomwalters@0 58 parameters_->GetInt("features.gaussians.priors_converged");
tomwalters@0 59 }
tomwalters@0 60
tomwalters@0 61 ModuleGaussians::~ModuleGaussians() {
tomwalters@0 62 }
tomwalters@0 63
tomwalters@0 64 bool ModuleGaussians::InitializeInternal(const SignalBank &input) {
tomwalters@0 65 m_pA.resize(m_iParamNComp, 0.0f);
tomwalters@0 66 m_pMu.resize(m_iParamNComp, 0.0f);
tomwalters@0 67
tomwalters@0 68 // Assuming the number of channels is greater than twice the number of
tomwalters@0 69 // Gaussian components, this is ok
tomwalters@0 70 if (input.channel_count() >= 2 * m_iParamNComp) {
tomwalters@0 71 output_.Initialize(1, m_iParamNComp, input.sample_rate());
tomwalters@0 72 } else {
tomwalters@0 73 LOG_ERROR(_T("Too few channels in filterbank to produce sensible "
tomwalters@0 74 "Gaussian features. Either increase the number of filterbank"
tomwalters@0 75 " channels, or decrease the number of Gaussian components"));
tomwalters@0 76 return false;
tomwalters@0 77 }
tomwalters@0 78
tomwalters@0 79 m_iNumChannels = input.channel_count();
tomwalters@0 80 m_pSpectralProfile.resize(m_iNumChannels, 0.0f);
tomwalters@0 81
tomwalters@0 82 return true;
tomwalters@0 83 }
tomwalters@0 84
tomwalters@0 85 void ModuleGaussians::Reset() {
tomwalters@0 86 m_pSpectralProfile.clear();
tomwalters@0 87 m_pSpectralProfile.resize(m_iNumChannels, 0.0f);
tomwalters@0 88 }
tomwalters@0 89
tomwalters@0 90 void ModuleGaussians::Process(const SignalBank &input) {
tomwalters@0 91 int iAudCh = 0;
tomwalters@0 92
tomwalters@0 93 // Calculate spectral profile
tomwalters@0 94 for (int iChannel = 0;
tomwalters@0 95 iChannel < input.channel_count();
tomwalters@0 96 ++iChannel) {
tomwalters@0 97 m_pSpectralProfile[iChannel] = 0.0f;
tomwalters@0 98 for (int iSample = 0;
tomwalters@0 99 iSample < input.buffer_length();
tomwalters@0 100 ++iSample) {
tomwalters@0 101 m_pSpectralProfile[iChannel] += input[iChannel][iSample];
tomwalters@0 102 }
tomwalters@0 103 }
tomwalters@0 104
tomwalters@0 105 for (int iChannel = 0;
tomwalters@0 106 iChannel < input.channel_count();
tomwalters@0 107 ++iChannel) {
tomwalters@0 108 m_pSpectralProfile[iChannel] = pow(m_pSpectralProfile[iChannel], 0.8);
tomwalters@0 109 }
tomwalters@0 110
tomwalters@0 111 float spectral_profile_sum = 0.0f;
tomwalters@0 112 for (int i = 0; i < input.channel_count(); ++i) {
tomwalters@0 113 spectral_profile_sum += m_pSpectralProfile[i];
tomwalters@0 114 }
tomwalters@0 115
tomwalters@0 116 RubberGMMCore(2, true);
tomwalters@0 117
tomwalters@0 118 float fMean1 = m_pMu[0];
tomwalters@0 119 float fMean2 = m_pMu[1];
tomwalters@0 120
tomwalters@0 121 float fA1 = 0.05 * m_pA[0];
tomwalters@0 122 float fA2 = 1.0 - 0.25 * m_pA[1];
tomwalters@0 123
tomwalters@0 124 float fGradient = (fMean2 - fMean1) / (fA2 - fA1);
tomwalters@0 125 float fIntercept = fMean2 - fGradient * fA2;
tomwalters@0 126
tomwalters@0 127 for (int i = 0; i < m_iParamNComp; ++i) {
tomwalters@0 128 m_pMu[i] = ((float)i / (float)m_iParamNComp - 1.0f)
tomwalters@0 129 * -fGradient + fIntercept;
tomwalters@0 130 }
tomwalters@0 131
tomwalters@0 132 for (int i = 0; i < m_iParamNComp; ++i) {
tomwalters@0 133 m_pA[i] = 1.0f / (float)m_iParamNComp;
tomwalters@0 134 }
tomwalters@0 135
tomwalters@0 136 RubberGMMCore(m_iParamNComp, false);
tomwalters@0 137
tomwalters@0 138 for (int i = 0; i < m_iParamNComp - 1; ++i) {
tomwalters@0 139 if (!isnan(m_pA[i])) {
tomwalters@0 140 output_.set_sample(i, 0, m_pA[i]);
tomwalters@0 141 } else {
tomwalters@0 142 output_.set_sample(i, 0, 0.0f);
tomwalters@0 143 }
tomwalters@0 144 }
tomwalters@0 145 /*for (int i = m_iParamNComp; i < m_iParamNComp * 2; ++i) {
tomwalters@0 146 m_pOutputData->getSignal(i)->setSample(iAudCh, 0, m_pMu[i-m_iParamNComp]);
tomwalters@0 147 }*/
tomwalters@0 148 double logsum = log(spectral_profile_sum);
tomwalters@0 149 if (!isinf(logsum)) {
tomwalters@0 150 output_.set_sample(m_iParamNComp - 1, 0, logsum);
tomwalters@0 151 } else {
tomwalters@0 152 output_.set_sample(m_iParamNComp - 1, 0, -1000.0);
tomwalters@0 153 }
tomwalters@0 154 PushOutput();
tomwalters@0 155 }
tomwalters@0 156
tomwalters@0 157 bool ModuleGaussians::RubberGMMCore(int iNComponents, bool bDoInit) {
tomwalters@0 158 int iSizeX = m_iNumChannels;
tomwalters@0 159
tomwalters@0 160 // Normalise the spectral profile
tomwalters@0 161 float fSpectralProfileTotal = 0.0f;
tomwalters@0 162 for (int iCount = 0; iCount < iSizeX; iCount++) {
tomwalters@0 163 fSpectralProfileTotal += m_pSpectralProfile[iCount];
tomwalters@0 164 }
tomwalters@0 165 for (int iCount = 0; iCount < iSizeX; iCount++) {
tomwalters@0 166 m_pSpectralProfile[iCount] /= fSpectralProfileTotal;
tomwalters@0 167 }
tomwalters@0 168
tomwalters@0 169 if (bDoInit) {
tomwalters@0 170 // Uniformly spaced components
tomwalters@0 171 float dd = (iSizeX - 1.0f) / iNComponents;
tomwalters@0 172 for (int i = 0; i < iNComponents; i++) {
tomwalters@0 173 m_pMu[i] = dd / 2.0f + (i * dd);
tomwalters@0 174 m_pA[i] = 1.0f / iNComponents;
tomwalters@0 175 }
tomwalters@0 176 }
tomwalters@0 177
tomwalters@0 178 vector<float> pA_old;
tomwalters@0 179 pA_old.resize(iNComponents);
tomwalters@0 180 vector<float> pP_mod_X;
tomwalters@0 181 pP_mod_X.resize(iSizeX);
tomwalters@0 182 vector<float> pP_comp;
tomwalters@0 183 pP_comp.resize(iSizeX * iNComponents);
tomwalters@0 184
tomwalters@0 185 for (int iIteration = 0; iIteration < m_iParamMaxIt; iIteration++) {
tomwalters@0 186 // (re)calculate posteriors (component probability given observation)
tomwalters@0 187 // denominator: the model density at all observation points X
tomwalters@0 188 for (int i = 0; i < iSizeX; ++i) {
tomwalters@0 189 pP_mod_X[i] = 0.0f;
tomwalters@0 190 }
tomwalters@0 191
tomwalters@0 192 for (int i = 0; i < iNComponents; i++) {
tomwalters@0 193 for (int iCount = 0; iCount < iSizeX; iCount++) {
tomwalters@0 194 pP_mod_X[iCount] += 1.0f / sqrt(2.0f * M_PI * m_fParamVar)
tomwalters@0 195 * exp((-0.5f) * pow(((float)iCount-m_pMu[i]), 2)
tomwalters@0 196 / m_fParamVar) * m_pA[i];
tomwalters@0 197 }
tomwalters@0 198 }
tomwalters@0 199
tomwalters@0 200 for (int i = 0; i < iSizeX * iNComponents; ++i) {
tomwalters@0 201 pP_comp[i] = 0.0f;
tomwalters@0 202 }
tomwalters@0 203
tomwalters@0 204 for (int i = 0; i < iNComponents; i++) {
tomwalters@0 205 for (int iCount = 0; iCount < iSizeX; iCount++) {
tomwalters@0 206 pP_comp[iCount + i * iSizeX] =
tomwalters@0 207 1.0f / sqrt(2.0f * M_PI * m_fParamVar)
tomwalters@0 208 * exp((-0.5f) * pow(((float)iCount - m_pMu[i]), 2) / m_fParamVar);
tomwalters@0 209 pP_comp[iCount + i * iSizeX] =
tomwalters@0 210 pP_comp[iCount + i * iSizeX] * m_pA[i] / pP_mod_X[iCount];
tomwalters@0 211 }
tomwalters@0 212 }
tomwalters@0 213
tomwalters@0 214 for (int iCount = 0; iCount < iSizeX; ++iCount) {
tomwalters@0 215 float fSum = 0.0f;
tomwalters@0 216 for (int i = 0; i < iNComponents; ++i) {
tomwalters@0 217 pP_comp[iCount+i*iSizeX] = pow(pP_comp[iCount + i * iSizeX],
tomwalters@0 218 m_fParamPosteriorExp); // expansion
tomwalters@0 219 fSum += pP_comp[iCount+i*iSizeX];
tomwalters@0 220 }
tomwalters@0 221 for (int i = 0; i < iNComponents; ++i)
tomwalters@0 222 pP_comp[iCount+i*iSizeX] = pP_comp[iCount + i * iSizeX] / fSum;
tomwalters@0 223 // renormalisation
tomwalters@0 224 }
tomwalters@0 225
tomwalters@0 226 for (int i = 0; i < iNComponents; ++i) {
tomwalters@0 227 pA_old[i] = m_pA[i];
tomwalters@0 228 m_pA[i] = 0.0f;
tomwalters@0 229 for (int iCount = 0; iCount < iSizeX; ++iCount) {
tomwalters@0 230 m_pA[i] += pP_comp[iCount + i * iSizeX] * m_pSpectralProfile[iCount];
tomwalters@0 231 }
tomwalters@0 232 }
tomwalters@0 233
tomwalters@0 234 // finish when already converged
tomwalters@0 235 float fPrdist = 0.0f;
tomwalters@0 236 for (int i = 0; i < iNComponents; ++i) {
tomwalters@0 237 fPrdist += pow((m_pA[i] - pA_old[i]), 2);
tomwalters@0 238 }
tomwalters@0 239 fPrdist /= iNComponents;
tomwalters@0 240
tomwalters@0 241 if (fPrdist < m_fParamPriorsConverged) {
tomwalters@0 242 LOG_INFO("Converged!");
tomwalters@0 243 break;
tomwalters@0 244 }
tomwalters@0 245
tomwalters@0 246 // update means (positions)
tomwalters@0 247 for (int i = 0 ; i < iNComponents; ++i) {
tomwalters@0 248 float mu_old = m_pMu[i];
tomwalters@0 249 if (m_pA[i] > 0.0f) {
tomwalters@0 250 m_pMu[i] = 0.0f;
tomwalters@0 251 for (int iCount = 0; iCount < iSizeX; ++iCount) {
tomwalters@0 252 m_pMu[i] += m_pSpectralProfile[iCount]
tomwalters@0 253 * pP_comp[iCount + i * iSizeX] * (float)iCount;
tomwalters@0 254 }
tomwalters@0 255 m_pMu[i] /= m_pA[i];
tomwalters@0 256 if (isnan(m_pMu[i])) {
tomwalters@0 257 m_pMu[i] = mu_old;
tomwalters@0 258 }
tomwalters@0 259 }
tomwalters@0 260 }
tomwalters@0 261 } // loop over iterations
tomwalters@0 262
tomwalters@0 263 // Ensure they are sorted, using a really simple bubblesort
tomwalters@0 264 bool bSorted = false;
tomwalters@0 265 while (!bSorted) {
tomwalters@0 266 bSorted = true;
tomwalters@0 267 for (int i = 0; i < iNComponents - 1; ++i) {
tomwalters@0 268 if (m_pMu[i] > m_pMu[i + 1]) {
tomwalters@0 269 float fTemp = m_pMu[i];
tomwalters@0 270 m_pMu[i] = m_pMu[i + 1];
tomwalters@0 271 m_pMu[i + 1] = fTemp;
tomwalters@0 272 fTemp = m_pA[i];
tomwalters@0 273 m_pA[i] = m_pA[i + 1];
tomwalters@0 274 m_pA[i + 1] = fTemp;
tomwalters@0 275 bSorted = false;
tomwalters@0 276 }
tomwalters@0 277 }
tomwalters@0 278 }
tomwalters@0 279 return true;
tomwalters@0 280 }
tomwalters@0 281 } //namespace aimc
tomwalters@0 282