tom@516
|
1 % Copyright 2012, Google, Inc.
|
dicklyon@523
|
2 % Author Richard F. Lyon
|
tom@516
|
3 %
|
tom@516
|
4 % This Matlab file is part of an implementation of Lyon's cochlear model:
|
tom@516
|
5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
|
tom@516
|
6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
|
tom@516
|
7 %
|
tom@516
|
8 % Licensed under the Apache License, Version 2.0 (the "License");
|
tom@516
|
9 % you may not use this file except in compliance with the License.
|
tom@516
|
10 % You may obtain a copy of the License at
|
tom@516
|
11 %
|
tom@516
|
12 % http://www.apache.org/licenses/LICENSE-2.0
|
tom@516
|
13 %
|
tom@516
|
14 % Unless required by applicable law or agreed to in writing, software
|
tom@516
|
15 % distributed under the License is distributed on an "AS IS" BASIS,
|
tom@516
|
16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
tom@516
|
17 % See the License for the specific language governing permissions and
|
tom@516
|
18 % limitations under the License.
|
tom@516
|
19
|
tom@516
|
20 function [naps, CF, decim_naps] = CARFAC_Run ...
|
tom@516
|
21 (CF, input_waves, AGC_plot_fig_num)
|
dicklyon@523
|
22 % function [naps, CF, decim_naps] = CARFAC_Run ...
|
dicklyon@523
|
23 % (CF, input_waves, AGC_plot_fig_num)
|
tom@516
|
24 % This function runs the CARFAC; that is, filters a 1 or more channel
|
tom@516
|
25 % sound input to make one or more neural activity patterns (naps).
|
tom@516
|
26 %
|
tom@516
|
27 % The CF struct holds the filterbank design and state; if you want to
|
tom@516
|
28 % break the input up into segments, you need to use the updated CF
|
tom@516
|
29 % to keep the state between segments.
|
tom@516
|
30 %
|
tom@516
|
31 % input_waves is a column vector if there's just one audio channel;
|
tom@516
|
32 % more generally, it has a row per time sample, a column per audio channel.
|
tom@516
|
33 %
|
tom@516
|
34 % naps has a row per time sample, a column per filterbank channel, and
|
tom@516
|
35 % a layer per audio channel if more than 1.
|
tom@516
|
36 % decim_naps is like naps but time-decimated by the int CF.decimation.
|
tom@516
|
37 %
|
tom@516
|
38 % the input_waves are assumed to be sampled at the same rate as the
|
tom@516
|
39 % CARFAC is designed for; a resampling may be needed before calling this.
|
tom@516
|
40 %
|
tom@516
|
41 % The function works as an outer iteration on time, updating all the
|
tom@516
|
42 % filters and AGC states concurrently, so that the different channels can
|
tom@516
|
43 % interact easily. The inner loops are over filterbank channels, and
|
tom@516
|
44 % this level should be kept efficient.
|
tom@516
|
45 %
|
tom@516
|
46 % See other functions for designing and characterizing the CARFAC:
|
tom@516
|
47 % CF = CARFAC_Design(fs, CF_filter_params, CF_AGC_params, n_mics)
|
tom@516
|
48 % transfns = CARFAC_Transfer_Functions(CF, to_chans, from_chans)
|
tom@516
|
49
|
tom@516
|
50 [n_samp, n_mics] = size(input_waves);
|
tom@516
|
51 n_ch = CF.n_ch;
|
tom@516
|
52
|
tom@516
|
53 if nargin < 3
|
tom@516
|
54 AGC_plot_fig_num = 0;
|
tom@516
|
55 end
|
tom@516
|
56
|
tom@516
|
57 if n_mics ~= CF.n_mics
|
tom@516
|
58 error('bad number of input_waves channels passed to CARFAC_Run')
|
tom@516
|
59 end
|
tom@516
|
60
|
dicklyon@523
|
61 % fastest decimated rate determines some interp needed:
|
dicklyon@523
|
62 decim1 = CF.AGC_params.decimation(1);
|
tom@516
|
63
|
tom@516
|
64 naps = zeros(n_samp, n_ch, n_mics);
|
dicklyon@523
|
65 decim_k = 0;
|
dicklyon@523
|
66 k_NAP_decim = 0;
|
dicklyon@523
|
67 NAP_decim = 8;
|
tom@516
|
68 if nargout > 2
|
tom@516
|
69 % make decimated detect output:
|
dicklyon@523
|
70 decim_naps = zeros(ceil(n_samp/NAP_decim), CF.n_ch, CF.n_mics);
|
tom@516
|
71 else
|
tom@516
|
72 decim_naps = [];
|
tom@516
|
73 end
|
tom@516
|
74
|
tom@516
|
75
|
dicklyon@523
|
76 k_AGC = 0;
|
dicklyon@523
|
77 AGC_plot_decim = 16; % how often to plot AGC state; TODO: use segments
|
tom@516
|
78
|
dicklyon@523
|
79
|
dicklyon@523
|
80 detects = zeros(n_ch, n_mics);
|
tom@516
|
81 for k = 1:n_samp
|
dicklyon@523
|
82 CF.k_mod_decim = mod(CF.k_mod_decim + 1, decim1); % global time phase
|
dicklyon@523
|
83 k_NAP_decim = mod(k_NAP_decim + 1, NAP_decim); % phase of decimated nap
|
tom@516
|
84 % at each time step, possibly handle multiple channels
|
tom@516
|
85 for mic = 1:n_mics
|
tom@516
|
86 [filters_out, CF.filter_state(mic)] = CARFAC_FilterStep( ...
|
tom@516
|
87 input_waves(k, mic), CF.filter_coeffs, CF.filter_state(mic));
|
dicklyon@523
|
88
|
tom@516
|
89 % update IHC state & output on every time step, too
|
tom@516
|
90 [ihc_out, CF.IHC_state(mic)] = CARFAC_IHCStep( ...
|
tom@516
|
91 filters_out, CF.IHC_coeffs, CF.IHC_state(mic));
|
dicklyon@523
|
92
|
dicklyon@523
|
93 detects(:, mic) = ihc_out; % for input to AGC, and out to SAI
|
dicklyon@523
|
94
|
tom@516
|
95 naps(k, :, mic) = ihc_out; % output to neural activity pattern
|
dicklyon@523
|
96
|
tom@516
|
97 end
|
dicklyon@523
|
98 if ~isempty(decim_naps) && (k_NAP_decim == 0)
|
dicklyon@523
|
99 decim_k = decim_k + 1; % index of decimated NAP
|
dicklyon@523
|
100 for mic = 1:n_mics
|
dicklyon@523
|
101 decim_naps(decim_k, :, mic) = CF.IHC_state(mic).ihc_accum / ...
|
dicklyon@523
|
102 NAP_decim; % for cochleagram
|
dicklyon@523
|
103 CF.IHC_state(mic).ihc_accum = zeros(n_ch,1);
|
tom@516
|
104 end
|
dicklyon@523
|
105 end
|
dicklyon@523
|
106 % run the AGC update step, taking input from IHC_state, decimating
|
dicklyon@523
|
107 % internally, all mics at once due to mixing across them:
|
dicklyon@523
|
108 [CF.AGC_state, updated] = ...
|
dicklyon@523
|
109 CARFAC_AGCStep(CF.AGC_coeffs, detects, CF.AGC_state);
|
dicklyon@523
|
110
|
dicklyon@523
|
111 % connect the feedback from AGC_state to filter_state when it updates
|
dicklyon@523
|
112 if updated
|
tom@516
|
113 for mic = 1:n_mics
|
dicklyon@523
|
114 new_damping = CF.AGC_state(mic).AGC_memory(:, 1); % stage 1 result
|
tom@516
|
115 % set the delta needed to get to new_damping:
|
dicklyon@523
|
116 % TODO: update this to use da and dc instead of dr maybe?
|
tom@516
|
117 CF.filter_state(mic).dzB_memory = ...
|
tom@516
|
118 (new_damping - CF.filter_state(mic).zB_memory) ...
|
dicklyon@523
|
119 / decim1;
|
tom@516
|
120 end
|
tom@516
|
121 end
|
dicklyon@523
|
122
|
dicklyon@523
|
123 k_AGC = mod(k_AGC + 1, AGC_plot_decim);
|
dicklyon@523
|
124 if AGC_plot_fig_num && k_AGC == 0
|
dicklyon@523
|
125 figure(AGC_plot_fig_num); hold off; clf
|
dicklyon@523
|
126 set(gca, 'Position', [.25, .25, .5, .5])
|
dicklyon@523
|
127
|
dicklyon@523
|
128 maxsum = 0;
|
dicklyon@523
|
129 for mic = 1:n_mics
|
dicklyon@523
|
130 plot(CF.AGC_state(mic).AGC_memory(:, 1), 'k-', 'LineWidth', 1)
|
dicklyon@523
|
131 maxes(mic) = max(CF.AGC_state(mic).AGC_memory(:));
|
dicklyon@523
|
132 hold on
|
dicklyon@523
|
133 stage1 = 4; % as opposed to stage
|
dicklyon@523
|
134 for stage = 1:3;
|
dicklyon@523
|
135 plot(2^(stage1-1) * (CF.AGC_state(mic).AGC_memory(:, stage) - ...
|
dicklyon@523
|
136 2 * CF.AGC_state(mic).AGC_memory(:, stage+1)));
|
dicklyon@523
|
137 end
|
dicklyon@523
|
138 stage = 4;
|
dicklyon@523
|
139 plot(2^(stage1-1) * CF.AGC_state(mic).AGC_memory(:, stage));
|
dicklyon@523
|
140 end
|
dicklyon@523
|
141 axis([0, CF.n_ch+1, -0.01, max(maxes) + 0.01]);
|
dicklyon@523
|
142 drawnow
|
dicklyon@523
|
143 end
|
dicklyon@523
|
144
|
tom@516
|
145 end
|
tom@516
|
146
|