annotate src/Modules/SSI/ModuleSSI.cc @ 195:0db637cac96b

- Added as-yet-unfinished support for a proper configuraiton file format - Added a couple of pythin scripts to generate HMM configuration files - Variable name changes and other cosmetic things - Added the option for the noise generation to do pink noise (untested)
author tomwalters
date Thu, 12 Aug 2010 11:28:11 +0000
parents c155e7fbe76e
children 73c6d61440ad
rev   line source
tomwalters@12 1 // Copyright 2010, Thomas Walters
tomwalters@12 2 //
tomwalters@12 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@12 4 // http://www.acousticscale.org/AIMC
tomwalters@12 5 //
tomwalters@45 6 // Licensed under the Apache License, Version 2.0 (the "License");
tomwalters@45 7 // you may not use this file except in compliance with the License.
tomwalters@45 8 // You may obtain a copy of the License at
tomwalters@12 9 //
tomwalters@45 10 // http://www.apache.org/licenses/LICENSE-2.0
tomwalters@12 11 //
tomwalters@45 12 // Unless required by applicable law or agreed to in writing, software
tomwalters@45 13 // distributed under the License is distributed on an "AS IS" BASIS,
tomwalters@45 14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tomwalters@45 15 // See the License for the specific language governing permissions and
tomwalters@45 16 // limitations under the License.
tomwalters@12 17
tomwalters@12 18 /*!
tomwalters@12 19 * \author Thomas Walters <tom@acousticscale.org>
tomwalters@12 20 * \date created 2010/02/19
tomwalters@12 21 * \version \$Id$
tomwalters@12 22 */
tomwalters@12 23
tomwalters@15 24 #include <cmath>
tomwalters@15 25
tomwalters@12 26 #include "Modules/SSI/ModuleSSI.h"
tomwalters@12 27
tomwalters@12 28 namespace aimc {
tomwalters@163 29 #ifdef _MSC_VER
tomwalters@163 30 // MSVC doesn't define log2()
tomwalters@163 31 float log2(float n) {
tomwalters@163 32 return log(n) / log(2.0);
tomwalters@163 33 }
tomwalters@163 34 #endif
tomwalters@163 35
tomwalters@12 36 ModuleSSI::ModuleSSI(Parameters *params) : Module(params) {
tomwalters@12 37 module_description_ = "Size-shape image (aka the 'sscAI')";
tomwalters@12 38 module_identifier_ = "ssi";
tomwalters@12 39 module_type_ = "ssi";
tomwalters@12 40 module_version_ = "$Id$";
tomwalters@12 41
tomwalters@32 42 // Cut off the SSI at the end of the first cycle
tomwalters@32 43 do_pitch_cutoff_ = parameters_->DefaultBool("ssi.pitch_cutoff", false);
tomwalters@32 44
tomwalters@32 45 // Weight the values in each channel more strongly if the channel was
tomwalters@32 46 // truncated due to the pitch cutoff. This ensures that the same amount of
tomwalters@32 47 // energy remains in the SSI spectral profile
tomwalters@32 48 weight_by_cutoff_ = parameters_->DefaultBool("ssi.weight_by_cutoff", false);
tomwalters@32 49
tomwalters@32 50 // Weight the values in each channel more strongly if the channel was
tomwalters@32 51 // scaled such that the end goes off the edge of the computed SSI.
tomwalters@32 52 // Again, this ensures that the overall energy of the spectral profile
tomwalters@32 53 // remains the same.
tomwalters@32 54 weight_by_scaling_ = parameters_->DefaultBool("ssi.weight_by_scaling",
tomwalters@32 55 false);
tomwalters@32 56
tomwalters@32 57 // Time from the zero-lag line of the SAI from which to start searching
tomwalters@32 58 // for a maximum in the input SAI's temporal profile.
tomwalters@32 59 pitch_search_start_ms_ = parameters_->DefaultFloat(
tomwalters@162 60 "ssi.pitch_search_start_ms", 2.0f);
tomwalters@32 61
tomwalters@32 62 // Total width in cycles of the whole SSI
tomwalters@32 63 ssi_width_cycles_ = parameters_->DefaultFloat("ssi.width_cycles", 10.0f);
tomwalters@32 64
tomwalters@32 65 // Set to true to make the cycles axis logarithmic (ie indexing by gamma
tomwalters@32 66 // rather than by cycles)
tomwalters@32 67 log_cycles_axis_ = parameters_->DefaultBool("ssi.log_cycles_axis", true);
tomwalters@32 68
tomwalters@32 69 // The centre frequency of the channel which will just fill the complete
tomwalters@32 70 // width of the SSI buffer
tomwalters@32 71 pivot_cf_ = parameters_->DefaultFloat("ssi.pivot_cf", 1000.0f);
tomwalters@12 72 }
tomwalters@12 73
tomwalters@12 74 ModuleSSI::~ModuleSSI() {
tomwalters@12 75 }
tomwalters@12 76
tomwalters@12 77 bool ModuleSSI::InitializeInternal(const SignalBank &input) {
tomwalters@12 78 // Copy the parameters of the input signal bank into internal variables, so
tomwalters@12 79 // that they can be checked later.
tomwalters@12 80 sample_rate_ = input.sample_rate();
tomwalters@12 81 buffer_length_ = input.buffer_length();
tomwalters@12 82 channel_count_ = input.channel_count();
tomwalters@12 83
tomwalters@32 84 ssi_width_samples_ = sample_rate_ * ssi_width_cycles_ / pivot_cf_;
tomwalters@15 85 if (ssi_width_samples_ > buffer_length_) {
tomwalters@15 86 ssi_width_samples_ = buffer_length_;
tomwalters@32 87 float cycles = ssi_width_samples_ * pivot_cf_ / sample_rate_;
tomwalters@15 88 LOG_INFO(_T("Requested SSI width of %f cycles is too long for the "
tomwalters@15 89 "input buffer length of %d samples. The SSI will be "
tomwalters@15 90 "truncated at %d samples wide. This corresponds to a width "
tomwalters@15 91 "of %f cycles."), ssi_width_cycles_, buffer_length_,
tomwalters@15 92 ssi_width_samples_, cycles);
tomwalters@15 93 ssi_width_cycles_ = cycles;
tomwalters@15 94 }
tomwalters@15 95 output_.Initialize(channel_count_, ssi_width_samples_, sample_rate_);
tomwalters@12 96 return true;
tomwalters@12 97 }
tomwalters@12 98
tomwalters@12 99 void ModuleSSI::ResetInternal() {
tomwalters@12 100 }
tomwalters@12 101
tomwalters@32 102 int ModuleSSI::ExtractPitchIndex(const SignalBank &input) const {
tomwalters@32 103 // Generate temporal profile of the SAI
tomwalters@32 104 vector<float> sai_temporal_profile(buffer_length_, 0.0f);
tomwalters@32 105 for (int i = 0; i < buffer_length_; ++i) {
tomwalters@32 106 float val = 0.0f;
tomwalters@32 107 for (int ch = 0; ch < channel_count_; ++ch) {
tomwalters@32 108 val += input.sample(ch, i);
tomwalters@32 109 }
tomwalters@32 110 sai_temporal_profile[i] = val;
tomwalters@32 111 }
tomwalters@32 112
tomwalters@32 113 // Find pitch value
tomwalters@32 114 int start_sample = floor(pitch_search_start_ms_ * sample_rate_ / 1000.0f);
tomwalters@32 115 int max_idx = 0;
tomwalters@32 116 float max_val = 0.0f;
tomwalters@32 117 for (int i = start_sample; i < buffer_length_; ++i) {
tomwalters@32 118 if (sai_temporal_profile[i] > max_val) {
tomwalters@32 119 max_idx = i;
tomwalters@32 120 max_val = sai_temporal_profile[i];
tomwalters@32 121 }
tomwalters@32 122 }
tomwalters@32 123 return max_idx;
tomwalters@32 124 }
tomwalters@32 125
tomwalters@12 126 void ModuleSSI::Process(const SignalBank &input) {
tomwalters@12 127 // Check to see if the module has been initialized. If not, processing
tomwalters@12 128 // should not continue.
tomwalters@12 129 if (!initialized_) {
tomwalters@13 130 LOG_ERROR(_T("Module %s not initialized."), module_identifier_.c_str());
tomwalters@12 131 return;
tomwalters@12 132 }
tomwalters@12 133
tomwalters@12 134 // Check that ths input this time is the same as the input passed to
tomwalters@12 135 // Initialize()
tomwalters@12 136 if (buffer_length_ != input.buffer_length()
tomwalters@12 137 || channel_count_ != input.channel_count()) {
tomwalters@12 138 LOG_ERROR(_T("Mismatch between input to Initialize() and input to "
tomwalters@13 139 "Process() in module %s."), module_identifier_.c_str());
tomwalters@12 140 return;
tomwalters@12 141 }
tomwalters@12 142
tomwalters@15 143 output_.set_start_time(input.start_time());
tomwalters@12 144
tomwalters@32 145 int pitch_index = buffer_length_ - 1;
tomwalters@32 146 if (do_pitch_cutoff_) {
tomwalters@32 147 pitch_index = ExtractPitchIndex(input);
tomwalters@32 148 }
tomwalters@32 149
tomwalters@15 150 for (int ch = 0; ch < channel_count_; ++ch) {
tomwalters@32 151 float centre_frequency = input.centre_frequency(ch);
tomwalters@162 152 // Copy the buffer from input to output, addressing by h-value
tomwalters@162 153 for (int i = 0; i < ssi_width_samples_; ++i) {
tomwalters@162 154 float h;
tomwalters@162 155 float cycle_samples = sample_rate_ / centre_frequency;
tomwalters@162 156 if (log_cycles_axis_) {
tomwalters@162 157 float gamma_min = -1.0f;
tomwalters@162 158 float gamma_max = log2(ssi_width_cycles_);
tomwalters@162 159 float gamma = gamma_min + (gamma_max - gamma_min)
tomwalters@162 160 * static_cast<float>(i)
tomwalters@162 161 / static_cast<float>(ssi_width_samples_);
tomwalters@162 162 h = pow(2.0f, gamma);
tomwalters@162 163 } else {
tomwalters@162 164 h = static_cast<float>(i) * ssi_width_cycles_
tomwalters@162 165 / static_cast<float>(ssi_width_samples_);
tomwalters@116 166 }
tomwalters@162 167
tomwalters@15 168 // The index into the input array is a floating-point number, which is
tomwalters@15 169 // split into a whole part and a fractional part. The whole part and
tomwalters@15 170 // fractional part are found, and are used to linearly interpolate
tomwalters@15 171 // between input samples to yield an output sample.
tomwalters@15 172 double whole_part;
tomwalters@162 173 float frac_part = modf(h * cycle_samples, &whole_part);
tomwalters@32 174 int sample = floor(whole_part);
tomwalters@32 175
tomwalters@162 176 float weight = 1.0f;
tomwalters@162 177
tomwalters@162 178 int cutoff_index = buffer_length_ - 1;
tomwalters@162 179 if (do_pitch_cutoff_) {
tomwalters@162 180 if (pitch_index < cutoff_index) {
tomwalters@162 181 if (weight_by_cutoff_) {
tomwalters@162 182 weight *= static_cast<float>(buffer_length_)
tomwalters@162 183 / static_cast<float>(pitch_index);
tomwalters@162 184 }
tomwalters@162 185 cutoff_index = pitch_index;
tomwalters@162 186 }
tomwalters@32 187 }
tomwalters@32 188
tomwalters@32 189 if (weight_by_scaling_) {
tomwalters@32 190 if (centre_frequency > pivot_cf_) {
tomwalters@32 191 weight *= (centre_frequency / pivot_cf_);
tomwalters@32 192 }
tomwalters@32 193 }
tomwalters@15 194
tomwalters@15 195 float val;
tomwalters@162 196 if (sample < cutoff_index) {
tomwalters@15 197 float curr_sample = input.sample(ch, sample);
tomwalters@15 198 float next_sample = input.sample(ch, sample + 1);
tomwalters@32 199 val = weight * (curr_sample
tomwalters@32 200 + frac_part * (next_sample - curr_sample));
tomwalters@15 201 } else {
tomwalters@36 202 val = 0.0f;
tomwalters@15 203 }
tomwalters@15 204 output_.set_sample(ch, i, val);
tomwalters@15 205 }
tomwalters@15 206 }
tomwalters@12 207 PushOutput();
tomwalters@12 208 }
tomwalters@12 209 } // namespace aimc
tomwalters@12 210