Mercurial > hg > aim92
view wdf/bank_tl.c @ 0:5242703e91d3 tip
Initial checkin for AIM92 aimR8.2 (last updated May 1997).
author | tomwalters |
---|---|
date | Fri, 20 May 2011 15:19:45 +0100 |
parents | |
children |
line wrap: on
line source
/* Copyright (c) Applied Psychology Unit, Medical Research Council. 1994 =========================================================================== Permission to use, copy, modify, and distribute this software without fee is hereby granted for research purposes, provided that this copyright notice appears in all copies and in all supporting documentation, and that the software is not redistributed for any fee (except for a nominal shipping charge). Anyone wanting to incorporate all or part of this software in a commercial product must obtain a license from the Medical Research Council. The MRC makes no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty. THE MRC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL THE A.P.U. BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Acknowledgment: ============== The source code provided in this file was originally developed by Christian Giguere as part of a Ph.D degree at the Department of Engineering of the University of Cambridge from April 1990 to November 1993. The code was subsequently adapted under a grant from the Hearing Research Trust for full compatibility with AIM Release 6.15. Christian Giguere 25/03/94 */ /* =========================================================== bank_tl.c =========================================================== Design of cochlear transmission line filterbank (TLF) with coupled outer ear and middle ear (EAR) filter. Author : Christian Giguere First written : 01st April, 1991 Last edited : 07th March, 1994 Reference: (1) C.Giguere and P.C.Woodland (1994). JASA 95(1): 331-342. =========================================================== */ /***** includes *****/ #include <math.h> #include <stdio.h> #include "stitch.h" #include "source.h" #include "calc.h" #include "calc_tl.h" #include "wdf_tl.h" #include "formulae.h" #include "formulae_tl.h" #include "scales.h" #include "scales_tl.h" #include "bank.h" #include "bank_tl.h" #include "ear.h" #include "wdf_ear.h" /***** defines *****/ #if 0 #define _DEBUG_ #endif #define MIN_CF ( 16.0 ) /* Minimum BM segment CF allowed (Hz) */ #define MAX_CF ( 15000.0 ) /* Maximum BM segment CF allowed (Hz) */ #define REF_CF ( 1000.0 ) /* Reference CF (Hz) for scaling BM output and Q factor */ #define L ( 3.5 ) /* Length of BM (cm) */ #define MinLength ( 1.0E-6 ) /* Mininum length of each BM segment (cm) */ #define B0 ( 0.015 ) /* BM width at basal end (cm) */ #define B_exp ( 0.30 ) /* Exponential constant for BM width (1/cm) */ #define A0 ( 0.03 ) /* Cross-sectional area of each scala at basal end (cm2) */ #define A_exp ( -0.60 ) /* Exponential constant for scalea cross-sectional area (1/cm) */ #define RHO_fluid ( 1.0 ) /* Density of cochlear fluids [g/cm3] */ #define MASS_PER_AREA ( 0.015 ) /* Transerval mass per area of basilar membrane (g/cm2) */ #define Q_CHANNEL ( 0 ) /* Introduce channel-dependent Q factor */ #define RATIO ( 30.0 ) /* Transformer ratio between oval window and eardrum */ #define WARPING ( 0 ) /* Compensate frequency warping of bilinear transform */ /***** externals */ extern Source InterpSource() ; /***** functions *****/ /************************************************************************** * name: function: * * tlf_bank_callback() Callable procedure returning pointer to filtered * data (BM velocity or displacement). * * TLF_GenBank() Set-up and initialization function for the design * of the cochlear filterbank. Returns pointer to * a new source. ***************************************************************************/ typedef struct _bank_segment BankSegment ; struct _bank_segment { double center_frequency ; double seglength, position ; int active ; } ; struct _tlf_bank_state { struct _fillable_source parent ; Source source ; Pointer input ; int inout_size ; void (*proc)(), (*closeEar)(), (*closeTLF)() ; int total_chans, display_chans ; TLF_BankInfo *bank ; WDFilterState **states ; int Ntube ; WaveWDFstate *wave_states ; EartubeWDFstate **eartube_states ; EarmiddleWDFstate *earmiddle_states ; } ; /************************* tlf_bank_callback() ****************************/ static Pointer tlf_bank_callback( state, bytes, buffer ) struct _tlf_bank_state *state ; ByteCount *bytes ; Pointer buffer ; { register TLF_BankInfo *bankInfo = state->bank ; register int last = *bytes == 0 ; register int points ; register ByteCount bytecount ; /***** process *****/ if( !last ) { points = *bytes * bankInfo->decimate_factor / ( state->display_chans * state->inout_size ) ; state->input = Pull( state->source, points * state->inout_size ) ; state->proc( bankInfo, state->states, state->input, buffer, points, state->total_chans, state->wave_states, state->eartube_states, state->earmiddle_states, state->Ntube ) ; return ( buffer ) ; } /***** close *****/ else { Pull( state->source, 0 ) ; state->closeEar( state->wave_states, state->eartube_states, state->earmiddle_states, state->Ntube ) ; state->closeTLF( state->states, state->total_chans, state->bank ) ; return ( DeleteFillableSource( state ) ) ; } } /************************** TLF_GenBank() *****************************/ Source TLF_GenBank( source, interps, info, chans, decimate_factor, samplerate, center_frequencies, output_gain, outdens, qbase, OHC_gain, OHC_sat, motionstr, concha, canal ) Source source ; int interps, info, *chans, *decimate_factor ; double samplerate, *center_frequencies, output_gain, outdens ; double qbase, OHC_gain, OHC_sat ; char *motionstr ; TubeInfo *concha, *canal ; { DeclareNew( struct _tlf_bank_state *, state ) ; BankSegment **bankSeg, *segmentPointer, **GenerateBankSegments() ; double density, freq, scale_disp, scale_vel ; double qfactor, bn, xn, delta_xn, an, Lt, zov ; double length, diam, attn ; Source outputSource ; int chan, total_chans, segment, counter = 0 ; /***** initialise input-related parameters *****/ state->inout_size = sizeof ( DataType ) ; state->input = ( char * ) 0 ; state->source = source ; /***** set WDF-TLF filterbank parameters *****/ density = DensityOnScale( ErbScale( center_frequencies[ 0 ]), ErbScale( center_frequencies[ *chans - 1]), *chans ) ; if( density == 0. ) { if( outdens <= 0. ) density = 1. ; /* arbitrary */ else density = outdens ; } if( interps > 0 ) interps = MIN( interps, ( int ) floor( log( ( double ) *chans ) / log( 2. ) ) ) ; bankSeg = GenerateBankSegments( interps, samplerate, center_frequencies, &density, &outdens, chans, &total_chans ) ; state->display_chans = *chans ; state->total_chans = total_chans ; state->states = NewArray( WDFilterState *, state->total_chans, "bank_tl.c for states" ) ; if( info ) fprintf( stderr, "\nTLF filterbank information:\n" ) ; xn = bankSeg[0]->position ; delta_xn = bankSeg[0]->seglength ; Lt = -2. * RHO_fluid / ( A0 * A_exp ) * ( exp( -A_exp * L ) - exp( -A_exp * ( xn + delta_xn ) ) ) ; for( chan = 0 ; chan < state->total_chans ; chan++ ) { segmentPointer = bankSeg[ chan ] ; freq = segmentPointer->center_frequency ; xn = segmentPointer->position ; delta_xn = MAX( segmentPointer->seglength, MinLength ) ; /*** channel-dependent scalea cross-sectional area ***/ an = A0 * exp( A_exp * xn ) ; /*** channel-dependent BM width ***/ bn = B0 * exp( B_exp * xn ) ; /*** channel-dependent Q-factor ***/ if ( Q_CHANNEL != 0 ) qfactor = qbase * ( freq / REF_CF ) * ( Erb( REF_CF ) / Erb(freq) ) ; else qfactor = qbase ; /*** print filterbank configuration ***/ if( info ) { counter += 1 * segmentPointer->active ; fprintf( stderr, "%3d -- active=%3d -- cf:%7.1f Hz =%6.2f ERBs -- x=%.3fcm delta=%.3fcm b=%.3fcm A=%.3fcm2\n", state->total_chans - chan, counter * segmentPointer->active, freq, ErbScale( freq ), xn, delta_xn, bn, an ) ; } /*** scale output ***/ scale_vel = output_gain * FILTERBANK_SCALE ; scale_disp = TwoPi * REF_CF * scale_vel ; /*** get filter states ***/ state->states[ chan ] = WDFilter( samplerate, freq, scale_vel, scale_disp, RHO_fluid, an, bn, qfactor, MASS_PER_AREA, delta_xn, Lt, WARPING, segmentPointer->active, &zov, OHC_gain, OHC_sat ) ; Delete( segmentPointer ) ; } Delete( bankSeg ) ; /*** set parameters common to all channels ***/ state->bank = New( TLF_BankInfo * ) ; state->bank->output_chans = state->display_chans ; /* set decimation parameters */ state->bank->decimateCount = 0 ; *decimate_factor = MAX( 1, *decimate_factor ) ; state->bank->decimate_factor = *decimate_factor ; /***** set output and nonlinearity variables, and filter procedure *****/ if( strncmp( motionstr, "velocity", 3 ) == 0 ) { state->proc = DoWDFdataArray ; state->bank->output_var = VELOCITY ; state->bank->nl_var = DISPLACEMENT ; } else { state->proc = DoWDFdataArray ; state->bank->output_var = DISPLACEMENT ; state->bank->nl_var = DISPLACEMENT ; } /***** Set WDF-EAR filter design parameters *****/ state->wave_states = FreefieldWDF( samplerate, RHO_air, C, As, concha->diameter/2. ) ; state->Ntube = concha->Nsegments + canal->Nsegments ; state->eartube_states = NewArray( EartubeWDFstate *, state->Ntube, "ear.c for eartube states" ) ; length = concha->length / concha->Nsegments ; diam = concha->diameter ; attn = concha->att_factor ; for( segment = 0 ; segment < concha->Nsegments ; segment++ ) state->eartube_states[ segment ] = EartubeWDF( samplerate, RHO_air, C, diam, length, attn ) ; length = canal->length / canal->Nsegments ; diam = canal->diameter ; attn = canal->att_factor ; for( ; segment < state->Ntube ; segment++ ) state->eartube_states[ segment ] = EartubeWDF( samplerate, RHO_air, C, diam, length, attn ) ; state->earmiddle_states = EarmiddleWDF( samplerate, zov, 1.0, RATIO ) ; /***** specify procedures upon closing *****/ state->closeEar = CloseEarWDF ; state->closeTLF = CloseWDF ; /***** initialise output-related parameters and return *****/ outputSource = SetFillableSource( state, tlf_bank_callback, "bank_tl.c filter" ) ; for( *chans = state->display_chans ; interps-- > 0 ; *chans = *chans * 2 - 1, density = density * 2. ) outputSource = InterpSource( outputSource, *chans ) ; return ( outputSource ) ; } /************************** lower level functions *************************/ BankSegment **GenerateBankSegments( interps, samplerate, display_frequencies, display_dens, out_dens, display_chans, total_chans ) int interps ; double samplerate ; double *display_frequencies ; double *display_dens, *out_dens ; int *display_chans, *total_chans ; { BankSegment **bankSeg, *segmentPointer ; double min_cf, max_cf ; double apical_cf, basal_cf ; double *apical_frequencies, *basal_frequencies ; double apical_dens, basal_dens, central_dens ; int apical_chans, basal_chans, central_chans ; int ichan, chan ; int remainder ; double cm_per_CB = GetERBscaling ( ) / 10. ; /***** set number and density of central channels *****/ if( interps >= 0 ) { central_chans = *display_chans = *display_chans >> interps ; central_dens = *display_dens = ldexp( *display_dens, -interps ) ; min_cf = FofErbScale( ErbScale( display_frequencies[0] ) - 1. / central_dens ) ; max_cf = display_frequencies[ ( central_chans - 1 ) << interps ] ; } else { central_chans = *display_chans << -interps ; central_dens = ldexp( *display_dens, -interps ) ; min_cf = FofErbScale( ErbScale( display_frequencies[0] ) - ( 1 << -interps ) / central_dens ) ; max_cf = display_frequencies[*display_chans - 1] ; } /***** set number and density of apical and basal channels outside display range *****/ if( *out_dens <= 0. ) { apical_cf = min_cf ; apical_dens = 0. ; basal_cf = max_cf ; basal_dens = 0. ; } else { apical_cf = adjustCF( MIN_CF, samplerate ) ; apical_dens = *out_dens ; basal_cf = adjustCF( MAX_CF, samplerate ) ; basal_dens = *out_dens ; } apical_chans = 0 ; basal_chans = 0 ; /***** generate apical and basal center frequencies outside display range *****/ apical_frequencies = GenerateFrequencies( apical_cf, min_cf, min_cf, &apical_dens, &apical_chans ) ; basal_frequencies = GenerateFrequencies( max_cf, basal_cf, max_cf, &basal_dens, &basal_chans ) ; /***** fill in array of BanKSegment structures with BM segment info *****/ *total_chans = apical_chans + central_chans + basal_chans - 2 ; bankSeg = NewArray( BankSegment *, *total_chans + 1, "tl_bank.c for segments" ) ; ichan = 0 ; for( chan = 1 ; chan < apical_chans ; chan++ ) { bankSeg[ ichan++ ] = segmentPointer = New( BankSegment * ) ; segmentPointer->center_frequency = apical_frequencies[ chan ] ; segmentPointer->seglength = cm_per_CB / apical_dens ; segmentPointer->position = L - cm_per_CB * ErbScale( segmentPointer->center_frequency ) ; segmentPointer->active = 0 ; } for( chan = 0 ; chan < central_chans ; chan++ ) { bankSeg[ ichan++ ] = segmentPointer = New( BankSegment * ) ; if( interps >= 0 ) { segmentPointer->center_frequency = display_frequencies[ chan << interps ] ; segmentPointer->active = 1 ; } else { remainder = chan % ( 1 << -interps ) ; segmentPointer->center_frequency = FofErbScale( ErbScale( display_frequencies[ chan >> -interps ] ) + ( remainder - ( 1 << -interps ) + 1 ) / central_dens ) ; segmentPointer->active = ( remainder == ( ( 1 << -interps ) - 1 ) ) ; } segmentPointer->seglength = cm_per_CB / central_dens ; segmentPointer->position = L - cm_per_CB * ErbScale( segmentPointer->center_frequency ) ; } for( chan = 1 ; chan < basal_chans ; chan++ ) { bankSeg[ ichan++ ] = segmentPointer = New( BankSegment * ) ; segmentPointer->center_frequency = basal_frequencies[ chan ] ; segmentPointer->seglength = cm_per_CB / basal_dens ; segmentPointer->position = L - cm_per_CB * ErbScale( segmentPointer->center_frequency ) ; segmentPointer->active = 0 ; } segmentPointer = bankSeg[ 0 ] ; if( ( segmentPointer->position + segmentPointer->seglength ) > L ) segmentPointer->seglength = L - MIN( L, segmentPointer->position ) ; /***** return and deallocate dynamic memory *****/ Delete( apical_frequencies ) ; Delete( basal_frequencies ) ; return( bankSeg ) ; } double *GenerateFrequencies( min_cf, max_cf, base_cf, density, channels ) double min_cf, max_cf, base_cf ; double *density ; int *channels ; { double freq, *frequencies ; /*** map characteristic frequencies onto specified scale ***/ min_cf = ErbScale( min_cf ) ; max_cf = ErbScale( max_cf ) ; max_cf = MAX( min_cf, max_cf ) ; /* max_cf cannot be smaller than min_cf */ base_cf = ErbScale( base_cf ) ; /*** call appropriate generating functions ***/ if( *channels <= 0 ) { if( *density <= 0. ) { *channels = 1 ; /* there must be at least one channel */ freq = FofErbScale( min_cf ) ; /* arbitrary */ frequencies = &freq ; *density = 1. ; /* arbitrary */ } else { frequencies = GenerateScale( min_cf, max_cf, *density, base_cf, FofErbScale ) ; *channels = NumberOnScale( min_cf, max_cf, *density, base_cf ) ; } } else { frequencies = NumberedScale( min_cf, max_cf, *channels, FofErbScale ) ; *density = DensityOnScale( min_cf, max_cf, *channels ) ; if( *density == 0. ) *density = 1. ; /* arbitrary */ } /*** return pointer to array of center frequencies ***/ return ( frequencies ) ; } double adjustCF( cf, samplerate ) double cf, samplerate ; { cf = MAX( cf, MIN_CF ) ; cf = MAX( cf, FofErbScale( 0. ) ) ; cf = MIN( cf, samplerate / 2. ) ; cf = MIN( cf, MAX_CF ) ; cf = MIN( cf, FofErbScale( 10. * L / GetERBscaling() ) ); return ( cf ) ; }