tomwalters@0
|
1 .TH GENBMM 1 "11 April 1994"
|
tomwalters@0
|
2 .LP
|
tomwalters@0
|
3 .SH NAME
|
tomwalters@0
|
4 .LP
|
tomwalters@0
|
5 genbmm \- generate basilar membrane motion
|
tomwalters@0
|
6 .LP
|
tomwalters@0
|
7 .SH SYNOPSIS
|
tomwalters@0
|
8 .LP
|
tomwalters@0
|
9 genbmm [ option=value | -option ] [ filename ]
|
tomwalters@0
|
10 .LP
|
tomwalters@0
|
11 .SH DESCRIPTION
|
tomwalters@0
|
12 .LP
|
tomwalters@0
|
13 The genbmm module of the AIM software simulates the spectral analysis
|
tomwalters@0
|
14 performed by the auditory system using a bank of auditory filters.
|
tomwalters@0
|
15 Specifically, genbmm converts an input wave into an array of filtered
|
tomwalters@0
|
16 waves, one for each channel of the filterbank. The surface of the
|
tomwalters@0
|
17 array of filtered waves is AIM's representation of basilar membrane
|
tomwalters@0
|
18 motion (BMM) as a function of time. AIM provides two alternative
|
tomwalters@0
|
19 methods for generating the BMM, linear, gammatone filterbank
|
tomwalters@0
|
20 (Patterson et al, 1988; Slaney 1993, Cooke, 1993), or a nonlinear,
|
tomwalters@0
|
21 transmission-line filterbank (Giguere and Woodland, 1994). For
|
tomwalters@0
|
22 convenience, they are referred to as the 'functional' filterbank and
|
tomwalters@0
|
23 the 'physiological' filterbank, respectively.
|
tomwalters@0
|
24 .LP
|
tomwalters@0
|
25 .SH OPTIONS
|
tomwalters@0
|
26 .LP
|
tomwalters@0
|
27 There are three sets of options for genbmm; they are grouped by
|
tomwalters@0
|
28 function and identified by the suffixes _afb, _gtf and _tlf. The first
|
tomwalters@0
|
29 set controls the distribution of the filtered waves across frequency
|
tomwalters@0
|
30 (suffix _afb); the second specifies the shape of the gammatone filter
|
tomwalters@0
|
31 (suffix _gtf); and the third specifies the shape of the transmission
|
tomwalters@0
|
32 line filter (suffix _tlf). These three groups of options are the
|
tomwalters@0
|
33 subject of this manual entry, together with an option that specifies
|
tomwalters@0
|
34 the filter choice (gtf or tlf), and an option that specifies whether a
|
tomwalters@0
|
35 middle ear function should be used with the gtf filterbank.
|
tomwalters@0
|
36 .LP
|
tomwalters@0
|
37 .SS "The Outer/Middle Ear function: middle_ear "
|
tomwalters@0
|
38 .PP
|
tomwalters@0
|
39 In the auditory system the middle ear causes a progressive attenuation
|
tomwalters@0
|
40 of sound energy in the region below about 500 Hz and a progressive
|
tomwalters@0
|
41 attenuation in the region above about 4000 Hz. There is also a
|
tomwalters@0
|
42 primary auditory canal resonance around 2700 Hz that provides a boost
|
tomwalters@0
|
43 in sound transmission. The resulting transfer function is a normal
|
tomwalters@0
|
44 aspect of auditory processing and preceeds spectral analysis. If the
|
tomwalters@0
|
45 functional filterbank is chosen (gtf), the outer/middle ear filter
|
tomwalters@0
|
46 acts directly on the input wave, and the stapes velocity wave it
|
tomwalters@0
|
47 generates is the input to the spectral filtering stage. If the
|
tomwalters@0
|
48 physiological filterbank is chosen (tlf), the outer/middle ear and
|
tomwalters@0
|
49 cochlear filter are performed simultaneously as in the auditory
|
tomwalters@0
|
50 system. The only parameter associated with this function is the
|
tomwalters@0
|
51 middle_ear switch which makes it possible to turn the outer/middle ear
|
tomwalters@0
|
52 filtering off when the functional filterbank is chosen.
|
tomwalters@0
|
53 .LP
|
tomwalters@0
|
54 .TP 13
|
tomwalters@0
|
55 middle_ear
|
tomwalters@0
|
56 Outer/middle ear switch
|
tomwalters@0
|
57 .RS
|
tomwalters@0
|
58 Switch. Default: on.
|
tomwalters@0
|
59 .RE
|
tomwalters@0
|
60 .RS
|
tomwalters@0
|
61 .LP
|
tomwalters@0
|
62 It is also possible to specify a floating point number, in which
|
tomwalters@0
|
63 case the middle ear output is multiplied by that value.
|
tomwalters@0
|
64 .RE
|
tomwalters@0
|
65 .LP
|
tomwalters@0
|
66 Note: The middle_ear option is ignored if option filter (see below)
|
tomwalters@0
|
67 is set to tlf. This is because the outer/middle stage and the
|
tomwalters@0
|
68 cochlear stage are bidirectionally coupled in the transmission
|
tomwalters@0
|
69 line filter implementation, and cannot be separated.
|
tomwalters@0
|
70 .RE
|
tomwalters@0
|
71 .LP
|
tomwalters@0
|
72 .SS "The Auditory FilterBank options: _afb "
|
tomwalters@0
|
73 .PP
|
tomwalters@0
|
74 The distribution of the filters across frequency and the total
|
tomwalters@0
|
75 number of output filters in the bank are determined by four parameters:
|
tomwalters@0
|
76 channels_afb, mincf_afb, maxcf_afb, and dencf_afb.
|
tomwalters@0
|
77 .LP
|
tomwalters@0
|
78 .TP 13
|
tomwalters@0
|
79 channels_afb
|
tomwalters@0
|
80 The number of channels in the filterbank.
|
tomwalters@0
|
81 .RS
|
tomwalters@0
|
82 Default unit: filters. Default value: 75
|
tomwalters@0
|
83 .RE
|
tomwalters@0
|
84 .TP 13
|
tomwalters@0
|
85 mincf_afb
|
tomwalters@0
|
86 The minimum centre frequency
|
tomwalters@0
|
87 .RS
|
tomwalters@0
|
88 Default unit: Hz. Default value: 100 Hz.
|
tomwalters@0
|
89 .RE
|
tomwalters@0
|
90 .TP 13
|
tomwalters@0
|
91 maxcf_afb
|
tomwalters@0
|
92 The maximum centre frequency
|
tomwalters@0
|
93 .RS
|
tomwalters@0
|
94 Default unit: Hz. Default value: 6000 Hz.
|
tomwalters@0
|
95 .RE
|
tomwalters@0
|
96 .TP 13
|
tomwalters@0
|
97 dencf_afb
|
tomwalters@0
|
98 The density of the filters in the filterbank.
|
tomwalters@0
|
99 .RS
|
tomwalters@0
|
100 Units: filters/critical band. Default: off
|
tomwalters@0
|
101 .RE
|
tomwalters@0
|
102 .RS
|
tomwalters@0
|
103 .LP
|
tomwalters@0
|
104 dencf_afb provides an alternative method of specifying the number of channels
|
tomwalters@0
|
105 in terms of the density of filters along the frequency scale.
|
tomwalters@0
|
106 .RE
|
tomwalters@0
|
107 .LP
|
tomwalters@0
|
108 Note: channels_afb overrides dencf_afb whenever it has a non-zero
|
tomwalters@0
|
109 value. The values of dencf_afb and channels_afb may conflict at
|
tomwalters@0
|
110 this point, in which case dencf_afb is ignored.
|
tomwalters@0
|
111 .RE
|
tomwalters@0
|
112 .LP
|
tomwalters@0
|
113 WARNING: When using the transmission line filter (filter=tlf), the
|
tomwalters@0
|
114 channel density should be 3 or more filters/erb. Using a lower
|
tomwalters@0
|
115 density may lead to excessive spatial discretization errors (see
|
tomwalters@0
|
116 Giguere and Woodland (1994) for a discussion). To view a small number
|
tomwalters@0
|
117 of channels, use a reasonable density and reduce the number of
|
tomwalters@0
|
118 displayed channels using option downchannel.
|
tomwalters@0
|
119 .LP
|
tomwalters@0
|
120 .TP 14
|
tomwalters@0
|
121 audiogram_afb
|
tomwalters@0
|
122 The audiogram
|
tomwalters@0
|
123 .RS
|
tomwalters@0
|
124 Units: none. Default: off. Status: obsolete.
|
tomwalters@0
|
125 .RE
|
tomwalters@0
|
126 .LP
|
tomwalters@0
|
127 Note: In the versions up to and including AIM R6.15, this parameter
|
tomwalters@0
|
128 was used as a means of approximating equal loudness contours, as well
|
tomwalters@0
|
129 as middle ear attenuation. It applies a spectral weighting function at
|
tomwalters@0
|
130 the output of the filterbank. With the addition of the outer/middle
|
tomwalters@0
|
131 ear transfer function, this parameter is obsolete, and so the default
|
tomwalters@0
|
132 value is off. Users who wish to use the audiogram parameter instead of
|
tomwalters@0
|
133 the new outer/middle filter as a loudness equilisation function can
|
tomwalters@0
|
134 still do so by setting audiogram_afb=on and middle_ear=off. As before,
|
tomwalters@0
|
135 audiogram_afb is applied as a power function and so as the value of
|
tomwalters@0
|
136 audiogram_afb decreases from 1 to 0, the degree of attenuation
|
tomwalters@0
|
137 decreases. Values greater than unity are allowed but their
|
tomwalters@0
|
138 interpretation is unclear.
|
tomwalters@0
|
139 .RE
|
tomwalters@0
|
140 .LP
|
tomwalters@0
|
141 The ERB scale for the gammatone auditory filterbank
|
tomwalters@0
|
142 is specificed with three options: bwmin_afb, quality_afb,
|
tomwalters@0
|
143 and mmerb_afb.
|
tomwalters@0
|
144 .LP
|
tomwalters@0
|
145 .TP 13
|
tomwalters@0
|
146 bwmin_afb
|
tomwalters@0
|
147 The minimum bandwidth for an auditory filter.
|
tomwalters@0
|
148 .RS
|
tomwalters@0
|
149 Default unit: Hz. Default value: 24.7
|
tomwalters@0
|
150 .RE
|
tomwalters@0
|
151 .TP 13
|
tomwalters@0
|
152 quality_afb
|
tomwalters@0
|
153 The limiting quality factor for high frequency auditory filters.
|
tomwalters@0
|
154 .RS
|
tomwalters@0
|
155 Units: scalar. Default: 9.265
|
tomwalters@0
|
156 .RE
|
tomwalters@0
|
157 .TP 13
|
tomwalters@0
|
158 mmerb_afb
|
tomwalters@0
|
159 The length of one erb-rate unit along the basilar membrane.
|
tomwalters@0
|
160 .RS
|
tomwalters@0
|
161 Units: mm. Default: 0.89
|
tomwalters@0
|
162 .RE
|
tomwalters@0
|
163 .LP 13
|
tomwalters@0
|
164 A listing of the parameters for the filter in the bank can be directed
|
tomwalters@0
|
165 to the terminal at run time by setting info_afb=on.
|
tomwalters@0
|
166 .RE
|
tomwalters@0
|
167 .TP
|
tomwalters@0
|
168 info_afb
|
tomwalters@0
|
169 Print filterbank information to stderr.
|
tomwalters@0
|
170 Switch. Default: off.
|
tomwalters@0
|
171 .RE
|
tomwalters@0
|
172 .LP
|
tomwalters@0
|
173 The physiological data on human cochlear frequency-position
|
tomwalters@0
|
174 function (Greenwood, 1990) and the psychoacoustic data on auditory
|
tomwalters@0
|
175 filter bandwidth (Patterson and Moore, 1986) indicate that the
|
tomwalters@0
|
176 spectral analysis performed in the cochlea is like a 'constant Q'
|
tomwalters@0
|
177 system (quality_afb) that asymptotes to a minimum filter bandwidth
|
tomwalters@0
|
178 (bwmin_afb) at low centre frequencies. That is,
|
tomwalters@0
|
179 .PD 0
|
tomwalters@0
|
180 .LP
|
tomwalters@0
|
181 .PD 4
|
tomwalters@0
|
182 .LP
|
tomwalters@0
|
183 erb = bwmin_afb + centre-frequency/quality_afb.
|
tomwalters@0
|
184 .PD 0
|
tomwalters@0
|
185 .LP
|
tomwalters@0
|
186 .PD 4
|
tomwalters@0
|
187 .LP
|
tomwalters@0
|
188 If we assume, as Greenwood suggests, that each filter bandwidth
|
tomwalters@0
|
189 corresponds to a constant distance (mmerb_afb) along the basilar
|
tomwalters@0
|
190 membrane, it is possible to scale frequency in terms of erb units (or
|
tomwalters@0
|
191 position along the basilar membrane) by integrating the inverse of the
|
tomwalters@0
|
192 erb function above.
|
tomwalters@0
|
193 .RE
|
tomwalters@0
|
194 .LP
|
tomwalters@0
|
195 Glasberg and Moore (1990) have reviewed the available human filter
|
tomwalters@0
|
196 shape data and concluded that the optimum values for bwmin_afb and
|
tomwalters@0
|
197 quality_afb are 24.7 and 9.265, respectively, together with mmerb_afb
|
tomwalters@0
|
198 of 0.89. (As a rule of thumb for rapid estimation, erb = 25 + 10% of
|
tomwalters@0
|
199 cf ). The auditory scale used by Greenwood (1990) can be specified by
|
tomwalters@0
|
200 setting bwmin_afb=22.85, quality_afb=7.238 and mmerb_afb=1.0. A
|
tomwalters@0
|
201 reasonable approximation to the Bark scale (Zwicker, 1961) is obtained
|
tomwalters@0
|
202 by setting bwmin_afb=80, quality_afb=6.5 and mmerb_afb=0.89.
|
tomwalters@0
|
203 .RE
|
tomwalters@0
|
204 .LP
|
tomwalters@0
|
205 .SS "Auditory filter design: filter "
|
tomwalters@0
|
206 .PP
|
tomwalters@0
|
207 The choice of filterbank -- linear gammatone or nonlinear transmission
|
tomwalters@0
|
208 line -- is determined by option filter.
|
tomwalters@0
|
209 .LP
|
tomwalters@0
|
210 .TP 13
|
tomwalters@0
|
211 filter
|
tomwalters@0
|
212 The auditory filter design
|
tomwalters@0
|
213 .RS
|
tomwalters@0
|
214 Default: gtf. Choices: gtf, tlf, off.
|
tomwalters@0
|
215 .RE
|
tomwalters@0
|
216 .LP
|
tomwalters@0
|
217 When gtf is specified, the options below with suffix _gtf apply, and
|
tomwalters@0
|
218 when tlf is specified, the options below with suffix _tlf apply. When
|
tomwalters@0
|
219 off is specified, the input wave (or the stapes velocity) is passed on
|
tomwalters@0
|
220 directly to the next stage. This provides for non-auditory use of the
|
tomwalters@0
|
221 modules following the filterbank with their associated displays. For
|
tomwalters@0
|
222 example, the envelope of the input wave (or stapes velocity) can be
|
tomwalters@0
|
223 extracted using the rectification and integration modules that follow
|
tomwalters@0
|
224 genbmm. The entry point genasa has the most convenient default
|
tomwalters@0
|
225 settings for this purpose. The default value for the filter option is
|
tomwalters@0
|
226 gtf.
|
tomwalters@0
|
227 .RE
|
tomwalters@0
|
228 .LP
|
tomwalters@0
|
229 .SS "The GammaTone Filter options: _gtf "
|
tomwalters@0
|
230 .LP
|
tomwalters@0
|
231 .TP 13
|
tomwalters@0
|
232 order_gtf
|
tomwalters@0
|
233 The order of the gammatone filter
|
tomwalters@0
|
234 .RS
|
tomwalters@0
|
235 Units: none. Default: 4
|
tomwalters@0
|
236 .RE
|
tomwalters@0
|
237 .RS
|
tomwalters@0
|
238 .LP
|
tomwalters@0
|
239 The order of the filter, order_gtf, determines the number of filtering
|
tomwalters@0
|
240 stages and so it determines the slope of the skirts of the attenuation
|
tomwalters@0
|
241 function and their extent. The default value is 4 and the range of
|
tomwalters@0
|
242 useful values is from about 2 to 8. The processing time increases
|
tomwalters@0
|
243 linearly with order above about order 2.
|
tomwalters@0
|
244 .RE
|
tomwalters@0
|
245 .LP
|
tomwalters@0
|
246 Note that the bandwidth calculation takes account of the fact that
|
tomwalters@0
|
247 changes in order_gtf affect bandwidth. Thus, as long as bwmin_afb is
|
tomwalters@0
|
248 fixed, changing the order will not affect the bandwidths of the
|
tomwalters@0
|
249 resulting filters. Increasing the order of the filter increases the
|
tomwalters@0
|
250 delay of the onset of the impulse response but it has little effect on
|
tomwalters@0
|
251 the shape of the envelope of the impulse response for orders greater
|
tomwalters@0
|
252 than three. The human auditory system is not sensitive to small phase
|
tomwalters@0
|
253 changes between filter channels (Patterson, 1987) and so filter order
|
tomwalters@0
|
254 is not well constrained by human experimental data. The default value
|
tomwalters@0
|
255 (4) is used because this value provides the best match between the
|
tomwalters@0
|
256 amplitude characteristics of the gammatone and roex filters for humans
|
tomwalters@0
|
257 (Patterson et al., 1988).
|
tomwalters@0
|
258 .LP
|
tomwalters@0
|
259 .TP 13
|
tomwalters@0
|
260 gain_gtf
|
tomwalters@0
|
261 Filter output amplification
|
tomwalters@0
|
262 .RS
|
tomwalters@0
|
263 Units: scalar. Default: 4.
|
tomwalters@0
|
264 .RE
|
tomwalters@0
|
265 .RS
|
tomwalters@0
|
266 .LP
|
tomwalters@0
|
267 The ratio of input to output level across the auditory filter
|
tomwalters@0
|
268 when the input is a sinusoid at the cf of the filter.
|
tomwalters@0
|
269 .RE
|
tomwalters@0
|
270 .TP 13
|
tomwalters@0
|
271 phase_gtf
|
tomwalters@0
|
272 The phase of the impulse response (obsolete)
|
tomwalters@0
|
273 .RS
|
tomwalters@0
|
274 Units: none. Default: 0.
|
tomwalters@0
|
275 .RE
|
tomwalters@0
|
276 .LP
|
tomwalters@0
|
277 In the absence of phase compensation, the surface of basilar membrane
|
tomwalters@0
|
278 motion has a strong rightward skew in the low-frequency channels
|
tomwalters@0
|
279 because the filters get progressively narrower as centre frequency
|
tomwalters@0
|
280 decreases, and this narrowing is accompanied by a slower filter
|
tomwalters@0
|
281 response. There are occassionally non-auditory reasons for wanting to
|
tomwalters@0
|
282 align the channels across frequency in one way or another. The
|
tomwalters@0
|
283 software provides four alignment systems which are discussed at the
|
tomwalters@0
|
284 end of this entry just before the references under the title Phase
|
tomwalters@0
|
285 Alignment.
|
tomwalters@0
|
286 .RE
|
tomwalters@0
|
287 .LP
|
tomwalters@0
|
288 .SS "The Transmission Line Filter options: _tlf "
|
tomwalters@0
|
289 .LP
|
tomwalters@0
|
290 .TP 13
|
tomwalters@0
|
291 motion_tlf
|
tomwalters@0
|
292 The basilar membrane output motion variable
|
tomwalters@0
|
293 .RS
|
tomwalters@0
|
294 Default: vel. Choices: vel, disp.
|
tomwalters@0
|
295 .RE
|
tomwalters@0
|
296 .RS
|
tomwalters@0
|
297 .LP
|
tomwalters@0
|
298 If vel (velocity) is specified, the output of genbmm
|
tomwalters@0
|
299 is the basilar membrane velocity. If disp (displacement)
|
tomwalters@0
|
300 is specified, the output of genbmm is the basilar membrane
|
tomwalters@0
|
301 displacement. The default value is vel.
|
tomwalters@0
|
302 .RE
|
tomwalters@0
|
303 .TP 13
|
tomwalters@0
|
304 outdencf_tlf
|
tomwalters@0
|
305 The density of the filters outside the display
|
tomwalters@0
|
306 range.
|
tomwalters@0
|
307 .RS
|
tomwalters@0
|
308 Units: filters/critical band. Default: 4.
|
tomwalters@0
|
309 .RE
|
tomwalters@0
|
310 .RS
|
tomwalters@0
|
311 .LP
|
tomwalters@0
|
312 In the transmission line filter implementation, it is necessary to
|
tomwalters@0
|
313 simulate the basilar membrane over its entire length. The option
|
tomwalters@0
|
314 outdencf_tlf provides a means of specifying the number of additional
|
tomwalters@0
|
315 channels that must be computed at the basal and apical ends of the
|
tomwalters@0
|
316 cochlea, ie. outside the range specified by mincf_afb and maxcf_afb
|
tomwalters@0
|
317 (see above). These additional channels are only computed for internal
|
tomwalters@0
|
318 use and are not passed to the next stage of processing.
|
tomwalters@0
|
319 .RE
|
tomwalters@0
|
320 .TP 13
|
tomwalters@0
|
321 qref_tlf
|
tomwalters@0
|
322 The local quality factor of each basilar membrane channel
|
tomwalters@0
|
323 .RS
|
tomwalters@0
|
324 Units: scalar. Default: 2.
|
tomwalters@0
|
325 .RE
|
tomwalters@0
|
326 .RS
|
tomwalters@0
|
327 .LP
|
tomwalters@0
|
328 Note: With the transmission line filter, the bandwidth is not
|
tomwalters@0
|
329 determined by options bwmin_afb and quality_afb at high levels but
|
tomwalters@0
|
330 rather by option qref_tlf (see above).
|
tomwalters@0
|
331 .RE
|
tomwalters@0
|
332 .TP 13
|
tomwalters@0
|
333 feedback_tlf
|
tomwalters@0
|
334 The feedback gain of the outer hair cell circuit
|
tomwalters@0
|
335 .RS
|
tomwalters@0
|
336 Units: scalar. Default: 0.99
|
tomwalters@0
|
337 .RE
|
tomwalters@0
|
338 .RS
|
tomwalters@0
|
339 .LP
|
tomwalters@0
|
340 WARNING: A value for feedback_afb greater than or equal to 1.0 can
|
tomwalters@0
|
341 lead to unstable behaviour at low-levels (ie. oscillation). However,
|
tomwalters@0
|
342 the model output will not grow unbound. The growth of the oscillations
|
tomwalters@0
|
343 will be limited by the saturating nonlinearity of the outer hair cell
|
tomwalters@0
|
344 circuit, and the model output will go into a kind of limit-cycle.
|
tomwalters@0
|
345 These model oscillations have not yet been studied in detail and are
|
tomwalters@0
|
346 likely to deviate substantially from real cochlear emissions.
|
tomwalters@0
|
347 .RE
|
tomwalters@0
|
348 .TP 13
|
tomwalters@0
|
349 dsat_tlf
|
tomwalters@0
|
350 The basilar membrane displacement at the half-saturation point
|
tomwalters@0
|
351 of the outer hair cell circuit
|
tomwalters@0
|
352 .RS
|
tomwalters@0
|
353 Units: cm. Default: 5.75e-6
|
tomwalters@0
|
354 .RE
|
tomwalters@0
|
355 .TP 13
|
tomwalters@0
|
356 gain_tlf
|
tomwalters@0
|
357 Filter output amplification
|
tomwalters@0
|
358 .RS
|
tomwalters@0
|
359 Units: scalar. Default: 4.
|
tomwalters@0
|
360 .RE
|
tomwalters@0
|
361 .RS
|
tomwalters@0
|
362 .LP
|
tomwalters@0
|
363 Note: There is an internal gain of 4.0 within the software of
|
tomwalters@0
|
364 the transmission line model itself. The total gain is therefore
|
tomwalters@0
|
365 4.0 times the value for gain_tlf.
|
tomwalters@0
|
366 .RE
|
tomwalters@0
|
367 .LP
|
tomwalters@0
|
368 Note: A linearized version of the transmission line filter with
|
tomwalters@0
|
369 roughly the same bandwidth as the gammatone filter can be obtained by
|
tomwalters@0
|
370 setting feedback_tlf=0 and qref_tlf to about 10. The main difference
|
tomwalters@0
|
371 is that the low-frequency skirt of the transmission line filter is
|
tomwalters@0
|
372 less steep than that of the gammatone.
|
tomwalters@0
|
373 .LP
|
tomwalters@0
|
374 .SH FURTHER DESCRIPTION
|
tomwalters@0
|
375 .LP
|
tomwalters@0
|
376 .SS "The distribution of filter centres along the ERB scale. "
|
tomwalters@0
|
377 .LP
|
tomwalters@0
|
378 Given values for mincf_afb maxcf_afb and channels_afb (or
|
tomwalters@0
|
379 dencf_afb), the program creates an array of centre frequencies
|
tomwalters@0
|
380 in three steps:
|
tomwalters@0
|
381 .LP
|
tomwalters@0
|
382 1. It centres a filter at 1.0 kHz.
|
tomwalters@0
|
383 .RE
|
tomwalters@0
|
384 .LP
|
tomwalters@0
|
385 2. Then it centres filters below 1.0 kHz, one after another,
|
tomwalters@0
|
386 until it encounters mincf_afb. (Thus, mincf_afb is actually the
|
tomwalters@0
|
387 frequency below which no filters are centred). The step size,
|
tomwalters@0
|
388 that is the distance between centre frequencies, is determined
|
tomwalters@0
|
389 by dencf_afb. When dencf_afb is equal to one, the centre
|
tomwalters@0
|
390 frequencies are 1 ERB apart. The ERB is the Equivalent
|
tomwalters@0
|
391 Rectangular Bandwidth of the filter (about 14% larger than the 3
|
tomwalters@0
|
392 dB bandwidth of the filter). The function relating the ERB to the
|
tomwalters@0
|
393 centre frequency of the filter is taken from a `critical band'
|
tomwalters@0
|
394 equation introduced by Greenwood (1961) and adapted to human
|
tomwalters@0
|
395 auditory masking by Glasberg and Moore (1990).
|
tomwalters@0
|
396 .RE
|
tomwalters@0
|
397 .LP
|
tomwalters@0
|
398 3. Finally, the program centres filters one after another in
|
tomwalters@0
|
399 the region above 1 kHz until it encounters maxcf_afb (which is,
|
tomwalters@0
|
400 actually, the frequency above which no filters are centred). When
|
tomwalters@0
|
401 dencf_afb is increased, say to two, the program allocates two
|
tomwalters@0
|
402 filters per critical band and spaces them at half ERB steps.
|
tomwalters@0
|
403 .RE
|
tomwalters@0
|
404 .LP
|
tomwalters@0
|
405 Note: It is not the bandwidths of the filters that are
|
tomwalters@0
|
406 controlled by dencf_afb but rather the density of filters along
|
tomwalters@0
|
407 the frequency axis. Thus, doubling dencf_afb does not cause the
|
tomwalters@0
|
408 bandwidth of the filters to be halved; rather it results in more
|
tomwalters@0
|
409 overlap between adjacent filters. With regard to the images
|
tomwalters@0
|
410 produced by genbmm, dencf_afb determines the density of lines on
|
tomwalters@0
|
411 the surface rather than the shape of the features that appear on
|
tomwalters@0
|
412 the surface.
|
tomwalters@0
|
413 .LP
|
tomwalters@0
|
414 .SH MOTIVATION
|
tomwalters@0
|
415 .LP
|
tomwalters@0
|
416 The motivation for adopting the gammatone filter shape is
|
tomwalters@0
|
417 threefold:
|
tomwalters@0
|
418 .LP
|
tomwalters@0
|
419 1. It provides an excellent summary of physiological data
|
tomwalters@0
|
420 concerning the impulse response of primary auditory neurons in
|
tomwalters@0
|
421 small mammals such as cats (de Boer and de Jongh, 1978; Carney and
|
tomwalters@0
|
422 Yin, 1989)
|
tomwalters@0
|
423 .RE
|
tomwalters@0
|
424 .LP
|
tomwalters@0
|
425 2. The amplitude characteristic of the gammatone filter is very
|
tomwalters@0
|
426 similar to that of the Roex filter commonly used to represent the
|
tomwalters@0
|
427 human auditory filter (Patterson, et al, 1982; Schofield, 1985;
|
tomwalters@0
|
428 Patterson et al, 1988) .
|
tomwalters@0
|
429 .RE
|
tomwalters@0
|
430 .LP
|
tomwalters@0
|
431 3. There are recursive gammatone filters that make the calculation
|
tomwalters@0
|
432 particularly fast both on general purpose computers and special
|
tomwalters@0
|
433 purpose DSP chips (Holdsworth et al, 1988; Cooke, 1993; Slaney, 1993).
|
tomwalters@0
|
434 .RE
|
tomwalters@0
|
435 .LP
|
tomwalters@0
|
436 In summary, the gammatone filter is designed to provide a reasonable
|
tomwalters@0
|
437 trade-off between accuracy in simulating basilar membrane motion, and
|
tomwalters@0
|
438 computational load.
|
tomwalters@0
|
439 .RE
|
tomwalters@0
|
440 .LP
|
tomwalters@0
|
441 The motivation for adopting the transmission line filter is
|
tomwalters@0
|
442 as follows:
|
tomwalters@0
|
443 .LP
|
tomwalters@0
|
444 1. The outer hair cell circuit of the transmission line filter is
|
tomwalters@0
|
445 level dependent and so this design produces level-dependent basilar
|
tomwalters@0
|
446 membrane tuning curves (Giguere and Woodland, 1994). There is now
|
tomwalters@0
|
447 ample evidence that the basilar membrane motion is indeed highly
|
tomwalters@0
|
448 nonlinear and a major source of level compression (eg. Johnstone et
|
tomwalters@0
|
449 al., 1986).
|
tomwalters@0
|
450 .LP
|
tomwalters@0
|
451 2. The internal structure of the transmission line filter model is
|
tomwalters@0
|
452 based on the physics of the auditory periphery and therefore provides
|
tomwalters@0
|
453 a more realistic cochlear simulation than parallel filterbanks. It
|
tomwalters@0
|
454 generates combination tones of the form 2f1-f2 as observed in the
|
tomwalters@0
|
455 auditory system and it has the potential to generate cochlear echoes.
|
tomwalters@0
|
456 .LP
|
tomwalters@0
|
457 3. The wave-digital-filter implementation of the transmission line
|
tomwalters@0
|
458 filterbank is only about twice as slow as the gammatone filterbank
|
tomwalters@0
|
459 for an equivalent number of channels.
|
tomwalters@0
|
460 .RE
|
tomwalters@0
|
461 .LP
|
tomwalters@0
|
462 .SH "Phase Alignment"
|
tomwalters@0
|
463 .LP
|
tomwalters@0
|
464 There is no question that the output of the cochlea has a phase lag
|
tomwalters@0
|
465 corresponding to the strong rightward skew. However, perceptual
|
tomwalters@0
|
466 evidence indicates that this phase lag has to be enormous (> 4ms) to
|
tomwalters@0
|
467 affect what we hear; indeed, reversing the phase lag with synthetic
|
tomwalters@0
|
468 stimuli does not change what we hear (Patterson, 1987). Phase
|
tomwalters@0
|
469 information that appears in the basilar membrane motion but which we
|
tomwalters@0
|
470 do not hear, is removed in the third module by the strobe mechanism of
|
tomwalters@0
|
471 the temporal integration process. As a result, the stabilised auditory
|
tomwalters@0
|
472 images are always phase aligned even though the basilar membrane
|
tomwalters@0
|
473 motion and the neural activity patterns are not.
|
tomwalters@0
|
474 .RE
|
tomwalters@0
|
475 .LP
|
tomwalters@0
|
476 Prior to discovering the integration mechanism, we wanted to find
|
tomwalters@0
|
477 a way of reducing the skew from the basilar membrane image, in
|
tomwalters@0
|
478 order to provide a visual representation that was more like what
|
tomwalters@0
|
479 we hear. The genbmm program provides the following options for
|
tomwalters@0
|
480 phase aligning the responses of successive filters, determined
|
tomwalters@0
|
481 by the value of the option phase_gtf:
|
tomwalters@0
|
482 .RE
|
tomwalters@0
|
483 .LP
|
tomwalters@0
|
484 Value Effect
|
tomwalters@0
|
485 .PP
|
tomwalters@0
|
486 .TP 7
|
tomwalters@0
|
487 -1
|
tomwalters@0
|
488 Envelope alignment.
|
tomwalters@0
|
489 .RS
|
tomwalters@0
|
490 Shift the channels of output horizontally so that the points of
|
tomwalters@0
|
491 maximum response to an impulse (ie the envelope maxima) will be aligned.
|
tomwalters@0
|
492 .RE
|
tomwalters@0
|
493 .TP 7
|
tomwalters@0
|
494 -2
|
tomwalters@0
|
495 Envelope plus fine structure alignment.
|
tomwalters@0
|
496 .RS
|
tomwalters@0
|
497 Perform envelope-peak alignment as in option -1 and then shift the
|
tomwalters@0
|
498 fine structure phase in each channel so that a fine- structure peak
|
tomwalters@0
|
499 coincides with the envelope peak.
|
tomwalters@0
|
500 .RE
|
tomwalters@0
|
501 .TP 7
|
tomwalters@0
|
502 -4
|
tomwalters@0
|
503 Envelope plus peak alignment, `left justified'.
|
tomwalters@0
|
504 .RS
|
tomwalters@0
|
505 Align the envelopes and fine structure of all of the impulse responses
|
tomwalters@0
|
506 along the left edge of the image.
|
tomwalters@0
|
507 .RE
|
tomwalters@0
|
508 .TP 6
|
tomwalters@0
|
509 0
|
tomwalters@0
|
510 No phase compensation.
|
tomwalters@0
|
511 .TP 7
|
tomwalters@0
|
512 +n
|
tomwalters@0
|
513 Advance each channel by n cycles of the centre frequency of the channel.
|
tomwalters@0
|
514 Approximate envelope alignment is achieved using phase_gtf = 3
|
tomwalters@0
|
515 or 4.
|
tomwalters@0
|
516 .RE
|
tomwalters@0
|
517 .LP
|
tomwalters@0
|
518 We experimented with a number of phase compensation schemes
|
tomwalters@0
|
519 (Patterson et al., 1989) and concluded that the best option was
|
tomwalters@0
|
520 envelope plus peak alignment which corresponds to a value of
|
tomwalters@0
|
521 phase_gtf = -4. Accordingly, we recommend the use of phase_gtf
|
tomwalters@0
|
522 values of 0 (ie no phase compensation) or -4 (envelope plus peak
|
tomwalters@0
|
523 alignment). The remaining options are occasionally useful and so
|
tomwalters@0
|
524 they have been left in the software.
|
tomwalters@0
|
525 Note that for any phase compensation option other than 0 the time
|
tomwalters@0
|
526 scale is strictly correct only for the lowest channel. For any
|
tomwalters@0
|
527 other channel, the origin of the abscissa is offset to the right
|
tomwalters@0
|
528 by an amount equal to the difference between `the envelope peak
|
tomwalters@0
|
529 time of the lowest-frequency channel' and `the envelope peak time
|
tomwalters@0
|
530 of the given channel'.
|
tomwalters@0
|
531 .RE
|
tomwalters@0
|
532 .LP
|
tomwalters@0
|
533 .SH REFERENCES
|
tomwalters@0
|
534 .LP
|
tomwalters@0
|
535 .RE
|
tomwalters@0
|
536 .TP 4
|
tomwalters@0
|
537 de Boer, E., and de Jongh, H.R. (1978). On cochlear encoding:
|
tomwalters@0
|
538 potentialities and limitations of the reverse-correlation
|
tomwalters@0
|
539 technique, J. Acoust. Soc. Am., 63, 115-135.
|
tomwalters@0
|
540 .RE
|
tomwalters@0
|
541 .LP
|
tomwalters@0
|
542 .TP 4
|
tomwalters@0
|
543 Carney, L.H. and Yin, C.T. (1988) 'Temporal coding of resonances
|
tomwalters@0
|
544 by low-frequency auditory nerve fibers: Single fibre responses
|
tomwalters@0
|
545 and a population model', J.Neurophysiology, 60, 1653-1677.
|
tomwalters@0
|
546 .RE
|
tomwalters@0
|
547 .LP
|
tomwalters@0
|
548 .TP 4
|
tomwalters@0
|
549 Cooke, M.P. (1993). Modelling Auditory Processing and
|
tomwalters@0
|
550 Organisation, Cambridge University Press.
|
tomwalters@0
|
551 .RE
|
tomwalters@0
|
552 .LP
|
tomwalters@0
|
553 .TP 4
|
tomwalters@0
|
554 Giguere, C. and Woodland, P.C. (1994). A computational model of
|
tomwalters@0
|
555 the auditory periphery for speech and hearing research. I. Ascending
|
tomwalters@0
|
556 path. J.Acoust. Soc. Am. 95: 331-342.
|
tomwalters@0
|
557 .RE
|
tomwalters@0
|
558 .LP
|
tomwalters@0
|
559 .TP 4
|
tomwalters@0
|
560 Glasberg, B.R. and B.C.J. Moore (1990). Derivation of auditory
|
tomwalters@0
|
561 filter shapes from notched-noise data. Hearing Research, 47,
|
tomwalters@0
|
562 103-138.
|
tomwalters@0
|
563 .RE
|
tomwalters@0
|
564 .LP
|
tomwalters@0
|
565 .TP 4
|
tomwalters@0
|
566 Greenwood, D.D. (1961) 'Critical bandwidth and the frequency
|
tomwalters@0
|
567 coordinates of the basilar membrane', J. Acoust. Soc. Am. 33,
|
tomwalters@0
|
568 1344-1356.
|
tomwalters@0
|
569 .RE
|
tomwalters@0
|
570 .LP
|
tomwalters@0
|
571 .TP 4
|
tomwalters@0
|
572 Greenwood, D.D. (1990). A cochlear frequency-position function
|
tomwalters@0
|
573 for several species - 29 years later. J. Acoust. Soc. Am., 87,
|
tomwalters@0
|
574 2592-2605.
|
tomwalters@0
|
575 .RE
|
tomwalters@0
|
576 .LP
|
tomwalters@0
|
577 .TP 4
|
tomwalters@0
|
578 Holdsworth, J., Nimmo-Smith, I., Patterson, R.D. and Rice, P.
|
tomwalters@0
|
579 (1988) Annex C of 'Spiral Vos Final Report, Part A: The
|
tomwalters@0
|
580 Auditory Filterbank,' APU report 2341.
|
tomwalters@0
|
581 .RE
|
tomwalters@0
|
582 .LP
|
tomwalters@0
|
583 .TP 4
|
tomwalters@0
|
584 Johnstone, B.M. et al. (1986). Hear Res. 22: 147-153.
|
tomwalters@0
|
585 .RE
|
tomwalters@0
|
586 .LP
|
tomwalters@0
|
587 .TP 4
|
tomwalters@0
|
588 Moore, B.C.J and Glasberg, B.R. (1983), "Suggested formulae for
|
tomwalters@0
|
589 calculating auditory filter bandwidths and excitiation patterns,"
|
tomwalters@0
|
590 J. Acoust. Soc. Am. 74, pp 750-753.
|
tomwalters@0
|
591 .RE
|
tomwalters@0
|
592 .LP
|
tomwalters@0
|
593 .TP 4
|
tomwalters@0
|
594 Patuzzi, R., and Robertson, D. (1988) "Tuning in the mammalian
|
tomwalters@0
|
595 cochlea," Physiological Reviews 68, 1009-1082.
|
tomwalters@0
|
596 .RE
|
tomwalters@0
|
597 .LP
|
tomwalters@0
|
598 .TP 4
|
tomwalters@0
|
599 Patterson, R.D. (1976). Auditory filter shapes derived with
|
tomwalters@0
|
600 noise stimuli. J. Acoust. Soc. Am., 59, 640-654.
|
tomwalters@0
|
601 .RE
|
tomwalters@0
|
602 .LP
|
tomwalters@0
|
603 .TP 4
|
tomwalters@0
|
604 Patterson, R.D. (1987). A pulse ribbon model of monaural phase
|
tomwalters@0
|
605 perception. J. Acoust. Soc. Am., 82, 1560-1586.
|
tomwalters@0
|
606 .RE
|
tomwalters@0
|
607 .LP
|
tomwalters@0
|
608 .TP 4
|
tomwalters@0
|
609 Patterson, R.D., Nimmo-Smith, I., Weber, D.L., and Milroy, R.
|
tomwalters@0
|
610 (1982). The deterioration of hearing with age: Frequency
|
tomwalters@0
|
611 selectivity, the critical ratio, the audiogram, and speech
|
tomwalters@0
|
612 threshold. J. Acoust. Soc. Am., 72, 1788-1803.
|
tomwalters@0
|
613 .RE
|
tomwalters@0
|
614 .LP
|
tomwalters@0
|
615 .TP 4
|
tomwalters@0
|
616 Patterson, R.D., Allerhand, M.H. and Holdsworth, J. (1992)
|
tomwalters@0
|
617 'Auditory representations of speech sounds', In Visual
|
tomwalters@0
|
618 representations of speech signals, Eds. Martin Cooke and Steve
|
tomwalters@0
|
619 Beet, John Wiley & Sons. 307-314.
|
tomwalters@0
|
620 .RE
|
tomwalters@0
|
621 .LP
|
tomwalters@0
|
622 .TP 4
|
tomwalters@0
|
623 Patterson, R. D., Holdsworth, J., Nimmo-Smith, I., and Rice, P.
|
tomwalters@0
|
624 (1988). SVOS Final Report: The Auditory Filterbank. APU report 2341.
|
tomwalters@0
|
625 .RE
|
tomwalters@0
|
626 .LP
|
tomwalters@0
|
627 .TP 4
|
tomwalters@0
|
628 Patterson, R.D. and B.C.J. Moore (1986). Auditory filters and
|
tomwalters@0
|
629 excitation patterns as representations of frequency
|
tomwalters@0
|
630 resolution. In: Frequency Selectivity in Hearing (B. C. J.
|
tomwalters@0
|
631 Moore, ed.), pp. 123-177. Academic Press, London.
|
tomwalters@0
|
632 .RE
|
tomwalters@0
|
633 .LP
|
tomwalters@0
|
634 .TP 4
|
tomwalters@0
|
635 Schofield, D. (1985) 'Visualisations of speech based on a model
|
tomwalters@0
|
636 of the peripheral auditory system', NPL Report DITC 62/85.
|
tomwalters@0
|
637 .RE
|
tomwalters@0
|
638 .LP
|
tomwalters@0
|
639 .TP 4
|
tomwalters@0
|
640 Slaney, M. (1993) An efficient implementation of the Patterson-
|
tomwalters@0
|
641 Holdsworth auditory filter bank. Apple Computer Technical
|
tomwalters@0
|
642 Report #35.
|
tomwalters@0
|
643 .RE
|
tomwalters@0
|
644 .LP
|
tomwalters@0
|
645 .TP 4
|
tomwalters@0
|
646 Zwicker, E. (1961) Subdivision of the audible frequency range into
|
tomwalters@0
|
647 critical bands (frequenzgruppen). J. Acoust. Soc. Am. 33, 248.
|
tomwalters@0
|
648 .LP
|
tomwalters@0
|
649 .SH EXAMPLES
|
tomwalters@0
|
650 .LP
|
tomwalters@0
|
651 The following command generates basilar membrane motion using the
|
tomwalters@0
|
652 gammatone filter design (the default) for an input filename cegc:
|
tomwalters@0
|
653 .RE
|
tomwalters@0
|
654 .LP
|
tomwalters@0
|
655 example% genbmm cegc
|
tomwalters@0
|
656 .RE
|
tomwalters@0
|
657 .LP
|
tomwalters@0
|
658 The following command generates basilar membrane motion using the
|
tomwalters@0
|
659 gammatone filter design (the default) for a filterbank with cf from
|
tomwalters@0
|
660 200 Hz to 5000 Hz at a density of 4 filters/critical band for the same
|
tomwalters@0
|
661 input filename:
|
tomwalters@0
|
662 .RE
|
tomwalters@0
|
663 .LP
|
tomwalters@0
|
664 example% genbmm channels=0 mincf=200 maxcf=5000 dencf=4. cegc
|
tomwalters@0
|
665 .RE
|
tomwalters@0
|
666 .LP
|
tomwalters@0
|
667 The following command generates basilar membrane motion using the
|
tomwalters@0
|
668 gammatone filter design (the default) and the audiogram function
|
tomwalters@0
|
669 instead of the outer/middle ear filter:
|
tomwalters@0
|
670 .RE
|
tomwalters@0
|
671 .LP
|
tomwalters@0
|
672 example% genbmm middle_ear=off audiogram=on cegc
|
tomwalters@0
|
673 .RE
|
tomwalters@0
|
674 .LP
|
tomwalters@0
|
675 The following command generates the basilar membrane motion using the
|
tomwalters@0
|
676 transmission line filter design instead of the default gammatone
|
tomwalters@0
|
677 filter:
|
tomwalters@0
|
678 .RE
|
tomwalters@0
|
679 .LP
|
tomwalters@0
|
680 example% genbmm filter=tlf cegc
|
tomwalters@0
|
681 .RE
|
tomwalters@0
|
682 .LP
|
tomwalters@0
|
683 The following command generates the basilar membrane motion using the
|
tomwalters@0
|
684 transmission line filter design and the auditory scale of Greenwood
|
tomwalters@0
|
685 (1990):
|
tomwalters@0
|
686 .RE
|
tomwalters@0
|
687 .LP
|
tomwalters@0
|
688 example% genbmm filter=tlf bwmin=22.85 quality=7.238 mmerb=1.0 cegc
|
tomwalters@0
|
689 .RE
|
tomwalters@0
|
690 .LP
|
tomwalters@0
|
691 The following command generates the basilar membrane motion using the
|
tomwalters@0
|
692 transmission line filter design, but with the nonlinear outer hair
|
tomwalters@0
|
693 cell feedback mechanism turned off:
|
tomwalters@0
|
694 .RE
|
tomwalters@0
|
695 .LP
|
tomwalters@0
|
696 example% genbmm filter=tlf feedback=off cegc
|
tomwalters@0
|
697 .LP
|
tomwalters@0
|
698 .SH FILES
|
tomwalters@0
|
699 .LP
|
tomwalters@0
|
700 .TP 13
|
tomwalters@0
|
701 .genbmmrc
|
tomwalters@0
|
702 The options file for genbmm.
|
tomwalters@0
|
703 .LP
|
tomwalters@0
|
704 .SH SEE ALSO
|
tomwalters@0
|
705 .LP
|
tomwalters@0
|
706 genasa, gensgm
|
tomwalters@0
|
707 .LP
|
tomwalters@0
|
708 .SH BUGS
|
tomwalters@0
|
709 .LP
|
tomwalters@0
|
710 There is a bug in the hiddenline plotting of genbmm. It shows up when
|
tomwalters@0
|
711 the surface has deep valleys and there is a large phase delay. The
|
tomwalters@0
|
712 negative peaks show through on surfaces where they should be hidden.
|
tomwalters@0
|
713 .SH COPYRIGHT
|
tomwalters@0
|
714 .LP
|
tomwalters@0
|
715 Copyright (c) Applied Psychology Unit, Medical Research Council, 1995
|
tomwalters@0
|
716 .LP
|
tomwalters@0
|
717 Permission to use, copy, modify, and distribute this software without fee
|
tomwalters@0
|
718 is hereby granted for research purposes, provided that this copyright
|
tomwalters@0
|
719 notice appears in all copies and in all supporting documentation, and that
|
tomwalters@0
|
720 the software is not redistributed for any fee (except for a nominal
|
tomwalters@0
|
721 shipping charge). Anyone wanting to incorporate all or part of this
|
tomwalters@0
|
722 software in a commercial product must obtain a license from the Medical
|
tomwalters@0
|
723 Research Council.
|
tomwalters@0
|
724 .LP
|
tomwalters@0
|
725 The MRC makes no representations about the suitability of this
|
tomwalters@0
|
726 software for any purpose. It is provided "as is" without express or
|
tomwalters@0
|
727 implied warranty.
|
tomwalters@0
|
728 .LP
|
tomwalters@0
|
729 THE MRC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
|
tomwalters@0
|
730 ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
|
tomwalters@0
|
731 THE A.P.U. BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
|
tomwalters@0
|
732 OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
tomwalters@0
|
733 WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
tomwalters@0
|
734 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
|
tomwalters@0
|
735 SOFTWARE.
|
tomwalters@0
|
736 .LP
|
tomwalters@0
|
737 .SH ACKNOWLEDGEMENTS
|
tomwalters@0
|
738 .LP
|
tomwalters@0
|
739 The AIM software was developed for Unix workstations by John
|
tomwalters@0
|
740 Holdsworth and Mike Allerhand of the MRC APU, under the direction of
|
tomwalters@0
|
741 Roy Patterson. The physiological version of AIM was developed by
|
tomwalters@0
|
742 Christian Giguere. The options handler is by Paul Manson. The revised
|
tomwalters@0
|
743 SAI module is by Jay Datta. Michael Akeroyd extended the postscript
|
tomwalters@0
|
744 facilites and developed the xreview routine for auditory image
|
tomwalters@0
|
745 cartoons.
|
tomwalters@0
|
746 .LP
|
tomwalters@0
|
747 The project was supported by the MRC and grants from the U.K. Defense
|
tomwalters@0
|
748 Research Agency, Farnborough (Research Contract 2239); the EEC Esprit
|
tomwalters@0
|
749 BR Porgramme, Project ACTS (3207); and the U.K. Hearing Research Trust.
|
tomwalters@0
|
750
|