Mercurial > hg > adaptinstrspec
view CAdaptInstrSpec.m @ 0:b4e26b53072f tip
Initial commit.
author | Holger Kirchhoff <holger.kirchhoff@eecs.qmul.ac.uk> |
---|---|
date | Tue, 04 Dec 2012 13:57:15 +0000 |
parents | |
children |
line wrap: on
line source
classdef CAdaptInstrSpec % CAdaptInstrSpec - Estimation of a filter curve that enables the % adaptation of instrument templates from one recording to another. The % beta-divergence is used as a cost function between the original and the % adapted spectra. All spectra need to be provided on a logarithmic % frequency axis (for now, an extension to linear frequency axes should % be straightforward). For further details on the estimation method, see % the references below. % % PROPERTIES % no public properties % % METHODS % CAdaptInstrSpec - constructor for CAdaptInstrSpec object % setH - sets filter curve 'h' % getH - returns estimate of filter curve ''h'' % getSmoothedH - returns smoothed and interpolated version of the % filter curve ''h'' % updateH - performs single update of filter curve ''h'' % estimateSpectra - estimates spectra based on current estimate of % the filter curve. % compBetaDivergence - compute beta-divergence between original and % estimated spectra % % For further help on the methods, type 'help CAdaptInstrSpec.[methodName]' % % % References: % % [1] H. Kirchhoff, S. Dixon, A. Klapuri. Missing spectral templates % estimation for user-assisted music transcription. IEEE International % Conference on Acoustics, Speech and Signal Processing, Vancouver, % Canada, 2013, submitted. % [2] H. Kirchhoff, S. Dixon, and A. Klapuri. Cross-recording adaptation of % musical instrument spectra. Technical Report C4DM-TR-11-2012, % Queen Mary University of London, 2012. % http://www.eecs.qmul.ac.uk/~holger/C4DM-TR-11-2012 % Copyright (C) 2012 Holger Kirchhoff % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. properties (Access='private') h = []; % filter transfer function maxDevFromMedianInDB = 10; % maximum deviation from mean values numCepstralCoeffs = 20; regularisationParam = 0.001; spectra_DB = []; % basis functions estimated from database (e.g. RWC) spectra_data = []; % basis functions derived from analysis spectrogram W_DB = []; % spectra_DB reduced to peak amplitudes only W_data = []; % spectra_data reduced to peak amplitudes only W_data_est = []; % estimated basis functions (W_data * h) f0Idcs_DB = []; % pitch values of columns in W_DB f0Idcs_data = []; % pitch values of columns in W_data numF0Idcs_DB = 0; numF0Idcs_data = 0; commonF0Idcs = []; % midi pitch values that occur both in f0Idcs_DB and in f0Idcs_data commonF0IdcsIdcs_DB = []; % pitch indices in f0Idcs_DB that also occur in f0Idcs_data commonF0IdcsIdcs_data = []; % pitch indices in f0Idcs_data that also occur in f0Idcs_DB numCommonShifts = 0; zeroIdcsW_data = []; % indices in W_data that are zero (required for numerical reasons) zeroIdcsW_data_est = []; % indices in W_DB that are zero zeroIdcsH = []; % indices in h that are zero maxNumFreqs = 0; costFctName = ''; costFctNames = {'LS', 'KL', 'IS', 'BD'}; beta = 0; % parameter beta for beta divergence end % properties methods function obj = CAdaptInstrSpec(spectra_DB, spectra_data, f0Idcs_DB, f0Idcs_data, numBinsPerSemitone, costFctName, varargin) % CAdaptInstrSpec - constructor of CAdaptInstrSpec class % % myObj = CAdaptInstrSpec(spectra_DB, spectra_data, f0Idcs_DB, % f0Idcs_data, numBinsPerSemitone, costFctName) % constructs a CAdaptInstrSpec object. % % Parameters: % spectra_DB - matrix containing in its columns the the % database templates that are to be adapted % spectra_data - matrix containing the spectra estimated % from the recording to which the database % spectra should be adapted % f0Idcs_DB - f0-indices corresponding to the columns % in spectra_DB % f0Idcs_data - f0-indices corresponding to the columns % in spectra_data % numBinsPerSemitone - pitch resolution of the constant-Q % spectra % costFctName - name of cost function. available cost % functions are: % 'LS' - least squares error % 'KL' - generalised Kullback-Leibler div. % 'IS' - Itakura-Saito divergence % 'BD' - beta divergence % % If 'BD' is selected as the cost function, the parameter beta % has to be provided by myObj = CAdaptInstrSpec(..., 'beta', % betaValue) where betaValue is a real, finite scalar. assert(length(f0Idcs_DB) == size(spectra_DB,2), 'number of values in ''f0Idcs_DB'' must be the same as number of columns in W_DB'); assert(length(f0Idcs_data) == size(spectra_data,2), 'number of values in ''f0Idcs_data'' must be the same as number of columns in W_data'); assert(size(spectra_DB,1) == size(spectra_data,1), 'number of frequency bins (rows) in W_DB and W_data must be the same'); % FIXME: check that inputs are valid! %% set member variables obj.f0Idcs_DB = f0Idcs_DB; obj.f0Idcs_data = f0Idcs_data; obj.spectra_DB = spectra_DB; obj.spectra_data = spectra_data; obj.maxNumFreqs = size(spectra_DB, 1); obj.numF0Idcs_DB = size(spectra_DB, 2); obj.numF0Idcs_data = size(spectra_data,2); [obj.commonF0Idcs, obj.commonF0IdcsIdcs_DB, obj.commonF0IdcsIdcs_data] = intersect(f0Idcs_DB, f0Idcs_data); obj.numCommonShifts = length(obj.commonF0IdcsIdcs_DB); %% reduce spectra to partial amplitudes only obj.W_DB = obj.noteSpec2partialSpec(spectra_DB, f0Idcs_DB, numBinsPerSemitone); obj.W_data = obj.noteSpec2partialSpec(spectra_data, f0Idcs_data, numBinsPerSemitone); %% adjust amplitudes in database spectra at common pitches obj.W_DB(:, obj.commonF0IdcsIdcs_DB) = obj.adjustPartialPositions(obj.W_DB(:, obj.commonF0IdcsIdcs_DB), ... obj.W_data(:, obj.commonF0IdcsIdcs_data), ... obj.commonF0Idcs, numBinsPerSemitone); %% find zero-entries in W_data and W_data_est obj.zeroIdcsW_data = (obj.W_data(:,obj.commonF0IdcsIdcs_data) == 0); obj.zeroIdcsW_data_est = (obj.W_DB(:,obj.commonF0IdcsIdcs_DB) == 0); % zero where W_DB is zero (see computeW_data_est) obj.zeroIdcsH = (sum(obj.W_data,2) == 0) | (sum(obj.W_DB(:,obj.commonF0IdcsIdcs_DB),2) == 0); assert(ischar(costFctName), ~any(strcmpi(costFctName, obj.costFctNames)), ... 'Argument ''costFctName'' must be a string, and must match one of the implemented cost function names.'); obj.costFctName = costFctName; %% set beta & cost function name switch obj.costFctName case 'LS' obj.beta = 2; obj.costFctName = 'BD'; case 'KL' obj.beta = 1; obj.costFctName = 'BD'; case 'IS' obj.beta = 0; obj.costFctName = 'BD'; case 'BD' %check if beta was set if isempty(varargin) % FIXME: if more optional arguments are added later, use MATLAB's inputparser error('When ''BD'' is used as the cost function, beta needs to be set.'); elseif ~strcmp(varargin{1}, 'beta') error('Name/value pair for ''beta'' not found.') end beta = varargin{2}; validateattributes(beta, {'numeric'}, {'scalar', 'real', 'finite', 'nonnan'}, 'CSourceFilter', 'beta', 5) obj.beta = beta; end %% initialise h obj.h = zeros(obj.maxNumFreqs,1); obj.h(~obj.zeroIdcsH) = 1; %% compute initial WEst obj = computeW_data_est(obj); end function obj = updateH(obj) % updateH - perform single update of filter curve ''h'' % % myObj = myObj.updateH applies the update functions to the % filter curve ''h''. %% get spectra at common f0 indices W_data = obj.W_data(:, obj.commonF0IdcsIdcs_data); W_DB = obj.W_DB(:, obj.commonF0IdcsIdcs_DB); W_data_est = obj.W_data_est; %% compute W_data * W_data_est^(beta-2) nomMatrix = W_data .* W_data_est .^ (obj.beta-2); % fix divide by 0 if obj.beta < 2 % if beta < 2, exponent of WEst^(beta-2) is negative -> division maxRatio = max(max(nomMatrix( ~obj.zeroIdcsW_data_est ))); nomMatrix(obj.zeroIdcsW_data & obj.zeroIdcsW_data_est) = 1; nomMatrix(~obj.zeroIdcsW_data & obj.zeroIdcsW_data_est) = maxRatio; end %% compute W_data^(beta-1) denomMatrix = W_data_est .^ (obj.beta-1); % fix divide by 0 if obj.beta < 1 % if beta < 1, exponent of WEst^(beta-1) is negative -> division maxRatio = max(max(denomMatrix(~obj.zeroIdcsW_data_est))); denomMatrix(obj.zeroIdcsW_data_est) = maxRatio; end %% multiply by W_DB nomMatrix = nomMatrix .* W_DB; denomMatrix = denomMatrix .* W_DB; %% compute nominator and denominator nom = sum(nomMatrix, 2); denom = sum(denomMatrix, 2); %% compute ratio ratio = nom ./ denom; ratio((nom==0) & (denom==0)) = 1; ratio((nom~=0) & (denom==0)) = max(ratio); %% apply update obj.h(~obj.zeroIdcsH) = obj.h(~obj.zeroIdcsH) .* ratio(~obj.zeroIdcsH); %% recompute WEst obj = computeW_data_est(obj); end function [spectra shiftVals] = estimateSpectra(obj, shiftVals) % estimateSpectra - computes basis functions from the current % estimates for e and h % % [spectra f0Idcs] = myObj.estimateSpectra(f0Idcs) estimates the % spectra at the f0 indices provided by ''f0Idcs'' by applying % the current estimate of the filter curve to the spectra in % ''spectra_DB'' (see constructor). Spectra are only returned % for those f0Idcs that exist in ''f0Idcs_DB'' specified in the % constructor. The output is a matrix ''spectra'' containing the % estimated spectra and a vector ''f0Idcs'' containing the % corresponding f0 indices. %FIXME: check that input variable 'shiftVals' is correct % find values in shiftVals that also exist in obj.f0Idcs_DB [commonShiftVals, shiftIdcs_DB, dummy] = intersect(obj.f0Idcs_DB, shiftVals); numCommonShiftVals = length(commonShiftVals); h = obj.getSmoothedH(); %h = obj.getH(); spectra = obj.spectra_DB(:,shiftIdcs_DB) .* repmat(h, 1, numCommonShiftVals); end function h = getH(obj) % getH - get filter curve ''h'' % % myH = myObj.getH() returns the member variable ''h''. h = obj.h; end function h = getSmoothedH(obj) % getH - get smoothed version of filter curve ''h'' % % myH = myObj.getSmoothedH() returns a smoothed version of the % filter curve ''h''. Smoothing is done by applying the discrete % cepstrum spectral envelope algorithm from Diemo Schwartz to % the filter curve ''h''. nonZeroFreqIdcsH = find(~obj.zeroIdcsH); % select nonzero entries from h h = obj.h; h_nonzero = h(nonZeroFreqIdcsH); h_nonzero_DB = 20*log10(h_nonzero); % correct outliers that are more than 10 dB above or below median medianInDB = median(h_nonzero_DB); idcs = h_nonzero_DB > medianInDB + obj.maxDevFromMedianInDB; h_nonzero(idcs) = 10^( (medianInDB + obj.maxDevFromMedianInDB)/20 ); idcs = h_nonzero_DB < medianInDB - obj.maxDevFromMedianInDB; h_nonzero(idcs) = 10^( (medianInDB - obj.maxDevFromMedianInDB)/20 ); % setup vector containing frequencies for cosine approx. w = (1:obj.maxNumFreqs)' / obj.maxNumFreqs * pi; % select w at nonzero entries of h w_nonzero = w(nonZeroFreqIdcsH); % copy first and last nonzero entry to boundaries if nonZeroFreqIdcsH(1) ~= 1 h_nonzero = [h_nonzero(1); h_nonzero]; w_nonzero = [w(1); w_nonzero]; end if nonZeroFreqIdcsH(end) ~= obj.maxNumFreqs h_nonzero = [h_nonzero; h_nonzero(end)]; w_nonzero = [w_nonzero; w(end)]; end % apply cosine approximation to h (discrete cepstrum) coeffs = dceps(h_nonzero, w_nonzero, obj.numCepstralCoeffs, obj.regularisationParam); h = idceps(coeffs, w); end function obj = setH(obj, h) % setH - set member variable h % % myObj = myObj.setH(myH) sets the member variable h to myH. % myH must be a non-negative column vector of length [number of % frequencies]. obj.h = h; obj = computeW_data_est(obj); end function betaDiv = compBetaDivergence(obj) % compBetaDivergence - computes beta divergence based on the % current estiates % % betaDiv = myObj.compBetaDivergence() returns the % beta-divergence between the instrument spectra from the % recording and the adapted database spectra based on the value % for beta specified by the cost function in the constructor. W_data = obj.W_data(~obj.zeroIdcsW_data_est); W_data_est = obj.W_data_est(~obj.zeroIdcsW_data_est); switch obj.beta case 0 betaDivMat = W_data ./ W_data_est - log(W_data ./ W_data_est) - 1; case 1 betaDivMat = W_data .* log(W_data ./ W_data_est) + W_data - W_data_est; otherwise betaDivMat = (W_data .^ obj.beta) / (obj.beta * (obj.beta-1)) ... + (W_data_est .^ obj.beta) / obj.beta ... - (W_data .* (W_data_est .^ (obj.beta-1))) / (obj.beta-1); end betaDiv = sum(betaDivMat(:)); end end % methods methods (Access = private) function obj = computeW_data_est(obj) % computes basis functions from the current estimates for s, e and h if ~isempty(obj.h) obj.W_data_est = obj.W_DB(:,obj.commonF0IdcsIdcs_DB) .* repmat(obj.h, 1, obj.numCommonShifts); end end end % methods (Access = private) methods (Access = private, Static) function partialSpectra = noteSpec2partialSpec(noteSpectra, f0Idcs, numBinsPerSemitone) % goes through all note spectra, extracts the partial amplitudes % and writes them to their absolute frequency positions % initialize matrix for result [numFreqs numPitches] = size(noteSpectra); partialSpectra = zeros(numFreqs, numPitches); % get (ideal) relative partial positions maxNumPartials = floor(freqIdx2PartialIdx(numFreqs, numBinsPerSemitone)); relF0IdcsOfPartials = partialIdx2FreqIdx((1:maxNumPartials)', numBinsPerSemitone); meansF0Idcs = geomean( [relF0IdcsOfPartials(1:end-1)'; relF0IdcsOfPartials(2:end)'] )'; relLowerBoundOfPartials = [1; floor(meansF0Idcs)+1]; relUpperBoundOfPartials = [floor(meansF0Idcs); numFreqs]; % go through all spectra for pitchIdx = 1:numPitches currF0Idx = f0Idcs(pitchIdx); currNumPartials = floor(freqIdx2PartialIdx(numFreqs-currF0Idx+1, numBinsPerSemitone)); % go through partials for partialIdx = 1:currNumPartials % find maximum with partial range lowerBound = currF0Idx-1 + relLowerBoundOfPartials(partialIdx); upperBound = min(currF0Idx-1 + relUpperBoundOfPartials(partialIdx), numFreqs); [maxAmpl maxIdx] = max(noteSpectra(lowerBound:upperBound, pitchIdx)); % write to result matrix partialSpectra(lowerBound-1+maxIdx, pitchIdx) = maxAmpl; end end end % noteSpec2partialSpec function W_DB = adjustPartialPositions(W_DB, W_data, f0Idcs, numBinsPerSemitone) % adjust the positions of the partials in W_DB to those in W_data assert(size(W_DB,2) == size(W_data,2), '''W_DB'' and ''W_data'' must contain the same number of columns'); assert(length(f0Idcs) == size(W_DB,2), 'Number of elements in ''f0Idcs'' must be equal to number of columns in ''W_DB'''); [numFreqs numPitches] = size(W_DB); % get (ideal) relative partial positions maxNumPartials = floor(freqIdx2PartialIdx(numFreqs, numBinsPerSemitone)); relF0IdcsOfPartials = partialIdx2FreqIdx((1:maxNumPartials)', numBinsPerSemitone); meansF0Idcs = geomean( [relF0IdcsOfPartials(1:end-1)'; relF0IdcsOfPartials(2:end)'] )'; relLowerBoundOfPartials = [-ceil(numBinsPerSemitone/2); floor(meansF0Idcs)+1]; % make 1st bound -numBinsPerSemitone/2 to allow 1st partial to deviate below ideal position relUpperBoundOfPartials = [floor(meansF0Idcs); numFreqs]; % go through all spectra for pitchIdx = 1:numPitches currF0Idx = f0Idcs(pitchIdx); currNumPartials = compNumPartials(numFreqs-currF0Idx+1, numBinsPerSemitone); % go through partials for partialIdx = 1:currNumPartials % compute bounds for partial range lowerBound = max(currF0Idx-1 + relLowerBoundOfPartials(partialIdx), 1); upperBound = min(currF0Idx-1 + relUpperBoundOfPartials(partialIdx), numFreqs); % get indices of partial in both W_DB and W_data idx_DB = find(W_DB(lowerBound:upperBound, pitchIdx)); idx_data = find(W_data(lowerBound:upperBound, pitchIdx)); % set partial amplitude in W_DB to frequency index of W_data partAmpl = W_DB(lowerBound-1+idx_DB, pitchIdx); W_DB(lowerBound-1+idx_DB, pitchIdx) = 0; W_DB(lowerBound-1+idx_data, pitchIdx) = partAmpl; end end end % adjustPartialPositions end % methods (Static) % % function Xshift = shiftSpectra(X, shiftVals) % % shifts each spectrum (column in X) down by the amount specified in % % shiftVals % % assert(size(X,2) == length(shiftVals), 'number values in ''shiftVals'' must be the same as number of columns in ''X'''); % % [maxNumFreqs numShifts] = size(X); % Xshift = zeros(maxNumFreqs, numShifts); % % for pitchIdx = 1:numShifts % phi = shiftVals(pitchIdx); % Xshift(1:maxNumFreqs-phi, pitchIdx) = X(phi+1:maxNumFreqs, pitchIdx); % end % end % end % methods (Static) end