Mercurial > hg > absrec
view test_exact.py @ 21:d395461b92ae tip
Lots and lots of modifications. Approximate recovery script working.
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Mon, 23 Apr 2012 10:54:57 +0300 |
parents | eccc7a5b9ee3 |
children |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Main script for exact reconstruction tests. Author: Nicolae Cleju """ __author__ = "Nicolae Cleju" __license__ = "GPL" __email__ = "nikcleju@gmail.com" import numpy import scipy.io import math import os import time import multiprocessing import sys # Try to do smart importing of matplotlib try: import matplotlib if os.name == 'nt': print "Importing matplotlib with default (GUI) backend... " else: print "Importing matplotlib with \"Cairo\" backend... " matplotlib.use('Cairo') import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as mcolors except: print "FAIL" print "Importing matplotlib.pyplot failed. No figures at all" print "Try selecting a different backend" currmodule = sys.modules[__name__] printLock = None # Lock for printing in a thread-safe way # Thread-safe variable to store number of finished tasks currmodule.proccount = multiprocessing.Value('I', 0) # 'I' = unsigned int, see docs (multiprocessing, array) # Contains pre-defined simulation parameters import stdparams_exact # Analysis operator and data generation functions import AnalysisGenerate # For exceptions import pyCSalgos.BP.l1eq_pd import pyCSalgos.NESTA.NESTA # For plotting with right axes import utils def initProcess(share, ntasks, printLock): """ Pool initializer function (multiprocessing) Needed to pass the shared variable to the worker processes The variables must be global in the module in order to be seen later in run_once_tuple() see http://stackoverflow.com/questions/1675766/how-to-combine-pool-map-with-array-shared-memory-in-python-multiprocessing """ currmodule = sys.modules[__name__] currmodule.proccount = share currmodule.ntasks = ntasks currmodule._printLock = printLock def generateTaskParams(globalparams): """ Generate a list of task parameters (for parallel running) """ taskparams = [] SNRdb = globalparams['SNRdb'] sigma = globalparams['sigma'] d = globalparams['d'] deltas = globalparams['deltas'] rhos = globalparams['rhos'] numvects = globalparams['numvects'] algos = globalparams['algos'] # Process parameters noiselevel = 1.0 / (10.0**(SNRdb/10.0)); for delta in deltas: for rho in rhos: p = round(sigma*d); m = round(delta*d); l = round(d - rho*m); # Generate Omega and data based on parameters Omega = AnalysisGenerate.Generate_Analysis_Operator(d, p); # Optionally make Omega more coherent #U,S,Vt = numpy.linalg.svd(Omega); #Sdnew = S * (1+numpy.arange(S.size)) # Make D coherent, not Omega! #Snew = numpy.vstack((numpy.diag(Sdnew), numpy.zeros((Omega.shape[0] - Omega.shape[1], Omega.shape[1])))) #Omega = numpy.dot(U , numpy.dot(Snew,Vt)) # Generate data x0,y,M,Lambda,realnoise = AnalysisGenerate.Generate_Data_Known_Omega(Omega, d,p,m,l,noiselevel, numvects,'l0') # Append task params taskparams.append((algos,Omega,y,M,x0)) return taskparams def processResults(params, taskresults): """ Process the raw task results """ deltas = params['deltas'] rhos = params['rhos'] algos = params['algos'] # Init results meanmatrix = dict() elapsed = dict() for algo in algos: meanmatrix[algo[1]] = numpy.zeros((rhos.size, deltas.size)) elapsed[algo[1]] = 0 # Process results idx = 0 for idelta,delta in zip(numpy.arange(deltas.size),deltas): for irho,rho in zip(numpy.arange(rhos.size),rhos): mrelerr,addelapsed = taskresults[idx] idx = idx+1 for algotuple in algos: meanmatrix[algotuple[1]][irho,idelta] = mrelerr[algotuple[1]] if meanmatrix[algotuple[1]][irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][irho,idelta]): meanmatrix[algotuple[1]][irho,idelta] = 0 elapsed[algotuple[1]] = elapsed[algotuple[1]] + addelapsed[algotuple[1]] procresults = dict() procresults['meanmatrix'] = meanmatrix procresults['elapsed'] = elapsed return procresults def saveSim(params, procresults): """ Save simulation to mat file """ #tosaveparams = ['d','sigma','deltas','rhos','numvects','SNRdb'] #tosaveprocresults = ['meanmatrix','elapsed'] tosave = dict() tosave['meanmatrix'] = procresults['meanmatrix'] tosave['elapsed'] = procresults['elapsed'] tosave['d'] = params['d'] tosave['sigma'] = params['sigma'] tosave['deltas'] = params['deltas'] tosave['rhos'] = params['rhos'] tosave['numvects'] = params['numvects'] tosave['SNRdb'] = params['SNRdb'] tosave['saveplotbase'] = params['saveplotbase'] tosave['saveplotexts'] = params['saveplotexts'] # Save algo names as cell array obj_arr = numpy.zeros((len(params['algos']),), dtype=numpy.object) idx = 0 for algotuple in params['algos']: obj_arr[idx] = algotuple[1] idx = idx+1 tosave['algonames'] = obj_arr try: scipy.io.savemat(params['savedataname'], tosave) except: print "Save error" def loadSim(savedataname): """ Load simulation from mat file """ mdict = scipy.io.loadmat(savedataname) params = dict() procresults = dict() procresults['meanmatrix'] = mdict['meanmatrix'][0,0] procresults['elapsed'] = mdict['elapsed'] params['d'] = mdict['d'] params['sigma'] = mdict['sigma'] params['deltas'] = mdict['deltas'] params['rhos'] = mdict['rhos'] params['numvects'] = mdict['numvects'] params['SNRdb'] = mdict['SNRdb'] params['saveplotbase'] = mdict['saveplotbase'][0] params['saveplotexts'] = mdict['saveplotexts'] algonames = mdict['algonames'][:,0] params['algonames'] = [] for algoname in algonames: params['algonames'].append(algoname[0]) return params, procresults def plot(savedataname): """ Plot results from a mat file. The files are saved in the current folder. """ params, procresults = loadSim(savedataname) meanmatrix = procresults['meanmatrix'] saveplotbase = params['saveplotbase'] saveplotexts = params['saveplotexts'] algonames = params['algonames'] for algoname in algonames: plt.figure() plt.imshow(meanmatrix[algoname], cmap=cm.gray, norm=mcolors.Normalize(0,1), interpolation='nearest',origin='lower') for ext in saveplotexts: plt.savefig(saveplotbase + algoname + '.' + ext, bbox_inches='tight') #plt.show() #========================== # Main function #========================== def run(params): """ Run simulation with given parameters """ print "This is analysis recovery ABS exact script by Nic" print "Running simulation" algos = params['algos'] d = params['d'] sigma = params['sigma'] deltas = params['deltas'] rhos = params['rhos'] numvects = params['numvects'] SNRdb = params['SNRdb'] if 'ncpus' in params: ncpus = params['ncpus'] else: ncpus = None savedataname = params['savedataname'] if ncpus is None: print " Running in parallel with default",multiprocessing.cpu_count(),"threads using \"multiprocessing\" package" if multiprocessing.cpu_count() == 1: doparallel = False else: doparallel = True elif ncpus > 1: print " Running in parallel with",ncpus,"threads using \"multiprocessing\" package" doparallel = True elif ncpus == 1: print "Running single thread" doparallel = False else: print "Wrong number of threads, exiting" return # Print summary of parameters print "Parameters:" print " Running algorithms",[algotuple[1] for algotuple in algos] # Prepare parameters print "Generating task parameters..." taskparams = generateTaskParams(params) # Store global variables currmodule.ntasks = len(taskparams) # Run print "Running..." taskresults = [] if doparallel: currmodule.printLock = multiprocessing.Lock() pool = multiprocessing.Pool(ncpus,initializer=initProcess,initargs=(currmodule.proccount,currmodule.ntasks,currmodule.printLock)) taskresults = pool.map(run_once_tuple, taskparams) else: for taskparam in taskparams: taskresults.append(run_once_tuple(taskparam)) # Process results procresults = processResults(params, taskresults) # Save saveSim(params, procresults) print "Finished." def run_once_tuple(t): """ Wrapper for run_once() that explodes the tuple argument t and shows the number of finished / remaining tasks """ # Call run_once() here results = run_once(*t) if currmodule.printLock: currmodule.printLock.acquire() currmodule.proccount.value = currmodule.proccount.value + 1 print "================================" print "Finished task",currmodule.proccount.value,"/",currmodule.ntasks,"tasks remaining",currmodule.ntasks - currmodule.proccount.value,"/",currmodule.ntasks print "================================" currmodule.printLock.release() return results def run_once(algos,Omega,y,M,x0): """ Run single task (i.e. task function) """ d = Omega.shape[1] nalgos = len(algos) xrec = dict() err = dict() relerr = dict() elapsed = dict() # Prepare storage variables for algorithms for i,algo in zip(numpy.arange(nalgos),algos): xrec[algo[1]] = numpy.zeros((d, y.shape[1])) err[algo[1]] = numpy.zeros(y.shape[1]) relerr[algo[1]] = numpy.zeros(y.shape[1]) elapsed[algo[1]] = 0 # Run algorithms for iy in numpy.arange(y.shape[1]): for algofunc,strname in algos: try: timestart = time.time() xrec[strname][:,iy] = algofunc(y[:,iy],M,Omega) elapsed[strname] = elapsed[strname] + (time.time() - timestart) except pyCSalgos.BP.l1eq_pd.l1eqNotImplementedError as e: if currmodule.printLock: currmodule.printLock.acquire() print "Caught exception when running algorithm",strname," :",e.message currmodule.printLock.release() except ValueError as e: if currmodule.printLock: currmodule.printLock.acquire() print "Caught ValueError exception when running algorithm",strname," :",e.message currmodule.printLock.release() err[strname][iy] = numpy.linalg.norm(x0[:,iy] - xrec[strname][:,iy]) relerr[strname][iy] = err[strname][iy] / numpy.linalg.norm(x0[:,iy]) for algofunc,strname in algos: if currmodule.printLock: currmodule.printLock.acquire() print strname,' : avg relative error = ',numpy.mean(relerr[strname]) currmodule.printLock.release() # Prepare results #mrelerr = dict() #for algotuple in algos: # mrelerr[algotuple[1]] = numpy.mean(relerr[algotuple[1]]) #return mrelerr,elapsed exactthr = 1e-6 mrelerr = dict() for algotuple in algos: mrelerr[algotuple[1]] = float(numpy.count_nonzero(relerr[algotuple[1]] < exactthr)) / y.shape[1] return mrelerr,elapsed def testMatlab(): """ For debugging only. Load parameters from a mat file saved by Matlab. """ mdict = scipy.io.loadmat("E:\\CS\\Ale mele\\Analysis_ExactRec\\temp.mat") algos = stdparams_exact.std1()[0] res = run_once(algos, mdict['Omega'].byteswap().newbyteorder(),mdict['y'],mdict['M'],mdict['x0']) def generateFig(): """ Generates figures from paper "Analysis-based sparse reconstruction with synthesis-based solvers". The figures are saved in the current folder. """ run(stdparams_exact.params1) #plot(stdparams_exact.params1['savedataname']) utils.replot_exact(stdparams_exact.params1['savedataname'], algonames = None, # will read them from mat file doshow=False, dosave=True, saveplotbase=stdparams_exact.params1['saveplotbase'], saveplotexts=stdparams_exact.params1['saveplotexts']) # Script main if __name__ == "__main__": # Set the number of cpus for paraller running (or comment to leave default = max) #stdparams_exact.paramstest['ncpus'] = 1 # Run test parameters #stdparams_exact.paramstest['ncpus'] = 1 #run(stdparams_exact.paramstest) #plot(stdparams_exact.paramstest['savedataname']) #stdparams_exact.params1['ncpus'] = 1 generateFig()