Mercurial > hg > absrec
view algos.py @ 21:d395461b92ae tip
Lots and lots of modifications. Approximate recovery script working.
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Mon, 23 Apr 2012 10:54:57 +0300 |
parents | 7fdf964f4edd |
children |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Define simple wrappers for algorithms, with similar header. Specific algorithm parameters are defined inside here. Author: Nicolae Cleju """ __author__ = "Nicolae Cleju" __license__ = "GPL" __email__ = "nikcleju@gmail.com" import numpy # Module with algorithms implemented in Python import pyCSalgos import pyCSalgos.GAP.GAP # Analysis by Synthesis - exact algorithms import ABSexact # Analysis by Synthesis - mixed algorithms import ABSmixed # Analysis by Synthesis - lambda algorithms import ABSlambda ###--------------------------------- ### Exact reconstruction algorithms ###--------------------------------- def run_exact_gap(y,M,Omega): """ Wrapper for GAP algorithm for exact analysis recovery """ gapparams = {"num_iteration" : 1000,\ "greedy_level" : 0.9,\ "stopping_coefficient_size" : 1e-4,\ "l2solver" : 'pseudoinverse',\ "noise_level": 1e-10} return pyCSalgos.GAP.GAP.GAP(y,M,M.T,Omega,Omega.T,gapparams,numpy.zeros(Omega.shape[1]))[0] def run_exact_bp(y,M,Omega): """ Wrapper for BP algorithm for exact analysis recovery Algorithm implementation is l1eq_pd() from l1-magic toolbox """ return ABSexact.bp(y,M,Omega,numpy.zeros(Omega.shape[0]), pdtol=1e-5, pdmaxiter = 100) def run_exact_bp_cvxopt(y,M,Omega): """ Wrapper for BP algorithm for exact analysis recovery Algorithm implementation is using cvxopt linear programming """ return ABSexact.bp_cvxopt(y,M,Omega) def run_exact_ompeps(y,M,Omega): """ Wrapper for OMP algorithm for exact analysis recovery, with stopping criterion = epsilon """ return ABSexact.ompeps(y,M,Omega,1e-9) #def run_exact_ompk(y,M,Omega) # """ # Wrapper for OMP algorithm for exact analysis recovery, with stopping criterion = fixed no. of atoms # """ def run_exact_sl0(y,M,Omega): """ Wrapper for SL0 algorithm for exact analysis recovery """ sigma_min = 1e-12 sigma_decrease_factor = 0.5 mu_0 = 2 L = 20 return ABSexact.sl0(y,M,Omega, sigma_min, sigma_decrease_factor, mu_0, L) def run_exact_tst(y,M,Omega): """ Wrapper for TST algorithm (with default optimized params) for exact analysis recovery """ nsweep = 300 tol = 1e-5 return ABSexact.tst_recom(y,M,Omega, nsweep, tol) ###--------------------------------------- ### Approximate reconstruction algorithms ###--------------------------------------- # 1. Native def run_gap(y,M,Omega,epsilon): """ Wrapper for GAP algorithm for approximate analysis recovery """ gapparams = {"num_iteration" : 1000,\ "greedy_level" : 0.9,\ "stopping_coefficient_size" : 1e-4,\ "l2solver" : 'pseudoinverse',\ "noise_level": epsilon} return pyCSalgos.GAP.GAP.GAP(y,M,M.T,Omega,Omega.T,gapparams,numpy.zeros(Omega.shape[1]))[0] def run_nesta(y,M,Omega,epsilon): """ Wrapper for NESTA algorithm for approximate analysis recovery """ U,S,V = numpy.linalg.svd(M, full_matrices = True) V = V.T # Make like Matlab m,n = M.shape # Make like Matlab S = numpy.hstack((numpy.diag(S), numpy.zeros((m,n-m)))) opt_muf = 1e-3 optsUSV = {'U':U, 'S':S, 'V':V} opts = {'U':Omega, 'Ut':Omega.T.copy(), 'USV':optsUSV, 'TolVar':1e-5, 'Verbose':0} return pyCSalgos.NESTA.NESTA.NESTA(M, None, y, opt_muf, epsilon, opts)[0] # 2. ABS-mixed def run_mixed_sl0(y,M,Omega,epsilon): """ Wrapper for SL0-mixed algorithm for approximate analysis recovery """ sigma_min = 0.001 sigma_decrease_factor = 0.5 mu_0 = 2 L = 10 return ABSmixed.sl0(y,M,Omega,epsilon,sigma_min, sigma_decrease_factor, mu_0, L) def run_mixed_bp(y,M,Omega,epsilon): """ Wrapper for BP-mixed algorithm for approximate analysis recovery """ return ABSmixed.bp(y,M,Omega,epsilon, numpy.zeros(Omega.shape[0])) # 3. ABS-lambda def run_lambda_sl0(y,M,Omega,epsilon,lbd): """ Wrapper for SL0 algorithm within ABS-lambda approach for approximate analysis recovery """ sigma_min = 0.001 sigma_decrease_factor = 0.5 mu_0 = 2 L = 10 return ABSlambda.sl0(y,M,Omega,epsilon, lbd, sigma_min, sigma_decrease_factor, mu_0, L) def run_lambda_bp(y,M,Omega,epsilon,lbd): """ Wrapper for BP algorithm within ABS-lambda approach for approximate analysis recovery """ return ABSlambda.bp(y,M,Omega,epsilon,lbd,numpy.zeros(Omega.shape[0])) def run_lambda_ompeps(y,M,Omega,epsilon,lbd): """ Wrapper for OMP algorithm, with stopping criterion = epsilon, for approximate analysis recovery within ABS-lambda approach """ return ABSlambda.ompeps(y,M,Omega,epsilon,lbd) def run_lambda_tst(y,M,Omega,epsilon,lbd): """ Wrapper for TST algorithm (with default optimized params) for approximate analysis recovery within ABS-lambda approach """ nsweep = 300 return ABSlambda.tst_recom(y,M,Omega,epsilon,lbd, nsweep) ### Define algorithm tuples: (function, name) ### Will be used in stdparams and in test scripts ## Exact recovery exact_gap = (run_exact_gap, 'GAP') exact_bp = (run_exact_bp, 'ABSexact_BP') exact_bp_cvxopt = (run_exact_bp_cvxopt, 'ABSexact_BP_cvxopt') exact_ompeps = (run_exact_ompeps, 'ABSexact_OMPeps') exact_sl0 = (run_exact_sl0, 'ABSexact_SL0') exact_tst = (run_exact_tst, 'ABSexact_TST') ## Approximate recovery # Native gap = (run_gap, 'GAP') nesta = (run_nesta, 'NESTA') # ABS-mixed mixed_sl0 = (run_mixed_sl0, 'ABSmixed_SL0') mixed_bp = (run_mixed_bp, 'ABSmixed_BP') # ABS-lambda lambda_sl0 = (run_lambda_sl0, 'ABSlambda_SL0') lambda_bp = (run_lambda_bp, 'ABSlambda_BP') lambda_ompeps = (run_lambda_ompeps, 'ABSlambda_OMPeps') lambda_tst = (run_lambda_tst, 'ABSlambda_TST')