comparison stdparams_exact.py @ 17:7fdf964f4edd

Added docstrings to files and functions
author Nic Cleju <nikcleju@gmail.com>
date Tue, 03 Apr 2012 16:27:18 +0300
parents a27cfe83fe12
children 4a967f4f18a0
comparison
equal deleted inserted replaced
16:23e9b536ba71 17:7fdf964f4edd
1 # -*- coding: utf-8 -*- 1 # -*- coding: utf-8 -*-
2 """ 2 """
3 Created on Wed Dec 07 14:04:40 2011 3 Defines standard parameters for exact reconstruction simulation
4 Author: Nicolae Cleju
5 """
6 __author__ = "Nicolae Cleju"
7 __license__ = "GPL"
8 __email__ = "nikcleju@gmail.com"
4 9
5 @author: ncleju
6 """
7 10
8 import numpy 11 import numpy
12
13 # Solver algorithms to run
9 from algos import * 14 from algos import *
10 15
16
17 # Test parameters
11 paramstest = dict() 18 paramstest = dict()
12 paramstest['algos'] = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms 19 paramstest['algos'] = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms
13 #paramstest['algos'] = exact_bp_cvxopt, # tuple of algorithms 20 #paramstest['algos'] = exact_bp_cvxopt, # tuple of algorithms
14 paramstest['d'] = 50.0 21 paramstest['d'] = 50.0
15 paramstest['sigma'] = 1.2 22 paramstest['sigma'] = 1.2
24 paramstest['saveplotbase'] = 'exact_pt_stdtest_' 31 paramstest['saveplotbase'] = 'exact_pt_stdtest_'
25 paramstest['saveplotexts'] = ('png','pdf','eps') 32 paramstest['saveplotexts'] = ('png','pdf','eps')
26 33
27 # Standard parameters 1 34 # Standard parameters 1
28 # All algorithms, 100 vectors 35 # All algorithms, 100 vectors
29 # d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 36 # d = 200, sigma = 1.2, delta and rho full resolution (0.05 step)
30 # Do save data, do save plots, don't show plots 37 # Virtually no noise (100db)
31 params1 = dict() 38 params1 = dict()
32 params1['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms 39 params1['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms
33 params1['d'] = 50.0; 40 params1['d'] = 200.0;
34 params1['sigma'] = 1.2 41 params1['sigma'] = 1.2
35 params1['deltas'] = numpy.arange(0.05,1.,0.05) 42 params1['deltas'] = numpy.arange(0.05,1.,0.05)
36 params1['rhos'] = numpy.arange(0.05,1.,0.05) 43 params1['rhos'] = numpy.arange(0.05,1.,0.05)
37 params1['numvects'] = 100; # Number of vectors to generate 44 params1['numvects'] = 100; # Number of vectors to generate
38 params1['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy 45 params1['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy
41 params1['saveplotexts'] = ('png','pdf','eps') 48 params1['saveplotexts'] = ('png','pdf','eps')
42 49
43 50
44 # Standard parameters 2 51 # Standard parameters 2
45 # All algorithms, 100 vectors 52 # All algorithms, 100 vectors
46 # d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 53 # d = 20, sigma = 10, delta and rho full resolution (0.05 step)
47 # Do save data, do save plots, don't show plots 54 # Virtually no noise (100db)
48 params2 = dict() 55 params2 = dict()
49 params2['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms 56 params2['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms
50 params2['d'] = 20.0 57 params2['d'] = 20.0
51 params2['sigma'] = 10.0 58 params2['sigma'] = 10.0
52 params2['deltas'] = numpy.arange(0.05,1.,0.05) 59 params2['deltas'] = numpy.arange(0.05,1.,0.05)