Mercurial > hg > absrec
comparison stdparams_exact.py @ 17:7fdf964f4edd
Added docstrings to files and functions
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Tue, 03 Apr 2012 16:27:18 +0300 |
parents | a27cfe83fe12 |
children | 4a967f4f18a0 |
comparison
equal
deleted
inserted
replaced
16:23e9b536ba71 | 17:7fdf964f4edd |
---|---|
1 # -*- coding: utf-8 -*- | 1 # -*- coding: utf-8 -*- |
2 """ | 2 """ |
3 Created on Wed Dec 07 14:04:40 2011 | 3 Defines standard parameters for exact reconstruction simulation |
4 Author: Nicolae Cleju | |
5 """ | |
6 __author__ = "Nicolae Cleju" | |
7 __license__ = "GPL" | |
8 __email__ = "nikcleju@gmail.com" | |
4 | 9 |
5 @author: ncleju | |
6 """ | |
7 | 10 |
8 import numpy | 11 import numpy |
12 | |
13 # Solver algorithms to run | |
9 from algos import * | 14 from algos import * |
10 | 15 |
16 | |
17 # Test parameters | |
11 paramstest = dict() | 18 paramstest = dict() |
12 paramstest['algos'] = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms | 19 paramstest['algos'] = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms |
13 #paramstest['algos'] = exact_bp_cvxopt, # tuple of algorithms | 20 #paramstest['algos'] = exact_bp_cvxopt, # tuple of algorithms |
14 paramstest['d'] = 50.0 | 21 paramstest['d'] = 50.0 |
15 paramstest['sigma'] = 1.2 | 22 paramstest['sigma'] = 1.2 |
24 paramstest['saveplotbase'] = 'exact_pt_stdtest_' | 31 paramstest['saveplotbase'] = 'exact_pt_stdtest_' |
25 paramstest['saveplotexts'] = ('png','pdf','eps') | 32 paramstest['saveplotexts'] = ('png','pdf','eps') |
26 | 33 |
27 # Standard parameters 1 | 34 # Standard parameters 1 |
28 # All algorithms, 100 vectors | 35 # All algorithms, 100 vectors |
29 # d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 | 36 # d = 200, sigma = 1.2, delta and rho full resolution (0.05 step) |
30 # Do save data, do save plots, don't show plots | 37 # Virtually no noise (100db) |
31 params1 = dict() | 38 params1 = dict() |
32 params1['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms | 39 params1['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms |
33 params1['d'] = 50.0; | 40 params1['d'] = 200.0; |
34 params1['sigma'] = 1.2 | 41 params1['sigma'] = 1.2 |
35 params1['deltas'] = numpy.arange(0.05,1.,0.05) | 42 params1['deltas'] = numpy.arange(0.05,1.,0.05) |
36 params1['rhos'] = numpy.arange(0.05,1.,0.05) | 43 params1['rhos'] = numpy.arange(0.05,1.,0.05) |
37 params1['numvects'] = 100; # Number of vectors to generate | 44 params1['numvects'] = 100; # Number of vectors to generate |
38 params1['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy | 45 params1['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy |
41 params1['saveplotexts'] = ('png','pdf','eps') | 48 params1['saveplotexts'] = ('png','pdf','eps') |
42 | 49 |
43 | 50 |
44 # Standard parameters 2 | 51 # Standard parameters 2 |
45 # All algorithms, 100 vectors | 52 # All algorithms, 100 vectors |
46 # d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 | 53 # d = 20, sigma = 10, delta and rho full resolution (0.05 step) |
47 # Do save data, do save plots, don't show plots | 54 # Virtually no noise (100db) |
48 params2 = dict() | 55 params2 = dict() |
49 params2['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms | 56 params2['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms |
50 params2['d'] = 20.0 | 57 params2['d'] = 20.0 |
51 params2['sigma'] = 10.0 | 58 params2['sigma'] = 10.0 |
52 params2['deltas'] = numpy.arange(0.05,1.,0.05) | 59 params2['deltas'] = numpy.arange(0.05,1.,0.05) |