To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / any / include / boost / math / distributions / students_t.hpp @ 160:cff480c41f97
History | View | Annotate | Download (18.1 KB)
| 1 |
// Copyright John Maddock 2006.
|
|---|---|
| 2 |
// Copyright Paul A. Bristow 2006, 2012, 2017.
|
| 3 |
// Copyright Thomas Mang 2012.
|
| 4 |
|
| 5 |
// Use, modification and distribution are subject to the
|
| 6 |
// Boost Software License, Version 1.0. (See accompanying file
|
| 7 |
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
| 8 |
|
| 9 |
#ifndef BOOST_STATS_STUDENTS_T_HPP
|
| 10 |
#define BOOST_STATS_STUDENTS_T_HPP
|
| 11 |
|
| 12 |
// http://en.wikipedia.org/wiki/Student%27s_t_distribution
|
| 13 |
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
|
| 14 |
|
| 15 |
#include <boost/math/distributions/fwd.hpp> |
| 16 |
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x). |
| 17 |
#include <boost/math/distributions/complement.hpp> |
| 18 |
#include <boost/math/distributions/detail/common_error_handling.hpp> |
| 19 |
#include <boost/math/distributions/normal.hpp> |
| 20 |
|
| 21 |
#include <utility> |
| 22 |
|
| 23 |
#ifdef BOOST_MSVC
|
| 24 |
# pragma warning(push)
|
| 25 |
# pragma warning(disable: 4702) // unreachable code (return after domain_error throw). |
| 26 |
#endif
|
| 27 |
|
| 28 |
namespace boost { namespace math { |
| 29 |
|
| 30 |
template <class RealType = double, class Policy = policies::policy<> > |
| 31 |
class students_t_distribution |
| 32 |
{
|
| 33 |
public:
|
| 34 |
typedef RealType value_type;
|
| 35 |
typedef Policy policy_type;
|
| 36 |
|
| 37 |
students_t_distribution(RealType df) : df_(df) |
| 38 |
{ // Constructor.
|
| 39 |
RealType result; |
| 40 |
detail::check_df_gt0_to_inf( // Checks that df > 0 or df == inf.
|
| 41 |
"boost::math::students_t_distribution<%1%>::students_t_distribution", df_, &result, Policy());
|
| 42 |
} // students_t_distribution
|
| 43 |
|
| 44 |
RealType degrees_of_freedom()const
|
| 45 |
{
|
| 46 |
return df_;
|
| 47 |
} |
| 48 |
|
| 49 |
// Parameter estimation:
|
| 50 |
static RealType find_degrees_of_freedom(
|
| 51 |
RealType difference_from_mean, |
| 52 |
RealType alpha, |
| 53 |
RealType beta, |
| 54 |
RealType sd, |
| 55 |
RealType hint = 100);
|
| 56 |
|
| 57 |
private:
|
| 58 |
// Data member:
|
| 59 |
RealType df_; // degrees of freedom is a real number > 0 or +infinity.
|
| 60 |
}; |
| 61 |
|
| 62 |
typedef students_t_distribution<double> students_t; // Convenience typedef for double version. |
| 63 |
|
| 64 |
template <class RealType, class Policy> |
| 65 |
inline const std::pair<RealType, RealType> range(const students_t_distribution<RealType, Policy>& /*dist*/) |
| 66 |
{ // Range of permissible values for random variable x.
|
| 67 |
// Now including infinity.
|
| 68 |
using boost::math::tools::max_value;
|
| 69 |
//return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
|
| 70 |
return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>()));
|
| 71 |
} |
| 72 |
|
| 73 |
template <class RealType, class Policy> |
| 74 |
inline const std::pair<RealType, RealType> support(const students_t_distribution<RealType, Policy>& /*dist*/) |
| 75 |
{ // Range of supported values for random variable x.
|
| 76 |
// Now including infinity.
|
| 77 |
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
| 78 |
using boost::math::tools::max_value;
|
| 79 |
//return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
|
| 80 |
return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>()));
|
| 81 |
} |
| 82 |
|
| 83 |
template <class RealType, class Policy> |
| 84 |
inline RealType pdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x) |
| 85 |
{
|
| 86 |
BOOST_FPU_EXCEPTION_GUARD |
| 87 |
BOOST_MATH_STD_USING // for ADL of std functions.
|
| 88 |
|
| 89 |
RealType error_result; |
| 90 |
if(false == detail::check_x_not_NaN( |
| 91 |
"boost::math::pdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))
|
| 92 |
return error_result;
|
| 93 |
RealType df = dist.degrees_of_freedom(); |
| 94 |
if(false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity. |
| 95 |
"boost::math::pdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))
|
| 96 |
return error_result;
|
| 97 |
|
| 98 |
RealType result; |
| 99 |
if ((boost::math::isinf)(x))
|
| 100 |
{ // - or +infinity.
|
| 101 |
result = static_cast<RealType>(0); |
| 102 |
return result;
|
| 103 |
} |
| 104 |
RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 105 |
// Use policies so that if policy requests lower precision,
|
| 106 |
// then get the normal distribution approximation earlier.
|
| 107 |
limit = static_cast<RealType>(1) / limit; // 1/eps |
| 108 |
// for 64-bit double 1/eps = 4503599627370496
|
| 109 |
if (df > limit)
|
| 110 |
{ // Special case for really big degrees_of_freedom > 1 / eps
|
| 111 |
// - use normal distribution which is much faster and more accurate.
|
| 112 |
normal_distribution<RealType, Policy> n(0, 1); |
| 113 |
result = pdf(n, x); |
| 114 |
} |
| 115 |
else
|
| 116 |
{ //
|
| 117 |
RealType basem1 = x * x / df; |
| 118 |
if(basem1 < 0.125) |
| 119 |
{
|
| 120 |
result = exp(-boost::math::log1p(basem1, Policy()) * (1+df) / 2); |
| 121 |
} |
| 122 |
else
|
| 123 |
{
|
| 124 |
result = pow(1 / (1 + basem1), (df + 1) / 2); |
| 125 |
} |
| 126 |
result /= sqrt(df) * boost::math::beta(df / 2, RealType(0.5f), Policy()); |
| 127 |
} |
| 128 |
return result;
|
| 129 |
} // pdf
|
| 130 |
|
| 131 |
template <class RealType, class Policy> |
| 132 |
inline RealType cdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x) |
| 133 |
{
|
| 134 |
RealType error_result; |
| 135 |
// degrees_of_freedom > 0 or infinity check:
|
| 136 |
RealType df = dist.degrees_of_freedom(); |
| 137 |
if (false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity. |
| 138 |
"boost::math::cdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))
|
| 139 |
{
|
| 140 |
return error_result;
|
| 141 |
} |
| 142 |
// Check for bad x first.
|
| 143 |
if(false == detail::check_x_not_NaN( |
| 144 |
"boost::math::cdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))
|
| 145 |
{
|
| 146 |
return error_result;
|
| 147 |
} |
| 148 |
if (x == 0) |
| 149 |
{ // Special case with exact result.
|
| 150 |
return static_cast<RealType>(0.5); |
| 151 |
} |
| 152 |
if ((boost::math::isinf)(x))
|
| 153 |
{ // x == - or + infinity, regardless of df.
|
| 154 |
return ((x < 0) ? static_cast<RealType>(0) : static_cast<RealType>(1)); |
| 155 |
} |
| 156 |
|
| 157 |
RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 158 |
// Use policies so that if policy requests lower precision,
|
| 159 |
// then get the normal distribution approximation earlier.
|
| 160 |
limit = static_cast<RealType>(1) / limit; // 1/eps |
| 161 |
// for 64-bit double 1/eps = 4503599627370496
|
| 162 |
if (df > limit)
|
| 163 |
{ // Special case for really big degrees_of_freedom > 1 / eps (perhaps infinite?)
|
| 164 |
// - use normal distribution which is much faster and more accurate.
|
| 165 |
normal_distribution<RealType, Policy> n(0, 1); |
| 166 |
RealType result = cdf(n, x); |
| 167 |
return result;
|
| 168 |
} |
| 169 |
else
|
| 170 |
{ // normal df case.
|
| 171 |
//
|
| 172 |
// Calculate probability of Student's t using the incomplete beta function.
|
| 173 |
// probability = ibeta(degrees_of_freedom / 2, 1/2, degrees_of_freedom / (degrees_of_freedom + t*t))
|
| 174 |
//
|
| 175 |
// However when t is small compared to the degrees of freedom, that formula
|
| 176 |
// suffers from rounding error, use the identity formula to work around
|
| 177 |
// the problem:
|
| 178 |
//
|
| 179 |
// I[x](a,b) = 1 - I[1-x](b,a)
|
| 180 |
//
|
| 181 |
// and:
|
| 182 |
//
|
| 183 |
// x = df / (df + t^2)
|
| 184 |
//
|
| 185 |
// so:
|
| 186 |
//
|
| 187 |
// 1 - x = t^2 / (df + t^2)
|
| 188 |
//
|
| 189 |
RealType x2 = x * x; |
| 190 |
RealType probability; |
| 191 |
if(df > 2 * x2) |
| 192 |
{
|
| 193 |
RealType z = x2 / (df + x2); |
| 194 |
probability = ibetac(static_cast<RealType>(0.5), df / 2, z, Policy()) / 2; |
| 195 |
} |
| 196 |
else
|
| 197 |
{
|
| 198 |
RealType z = df / (df + x2); |
| 199 |
probability = ibeta(df / 2, static_cast<RealType>(0.5), z, Policy()) / 2; |
| 200 |
} |
| 201 |
return (x > 0 ? 1 - probability : probability); |
| 202 |
} |
| 203 |
} // cdf
|
| 204 |
|
| 205 |
template <class RealType, class Policy> |
| 206 |
inline RealType quantile(const students_t_distribution<RealType, Policy>& dist, const RealType& p) |
| 207 |
{
|
| 208 |
BOOST_MATH_STD_USING // for ADL of std functions
|
| 209 |
//
|
| 210 |
// Obtain parameters:
|
| 211 |
RealType probability = p; |
| 212 |
|
| 213 |
// Check for domain errors:
|
| 214 |
RealType df = dist.degrees_of_freedom(); |
| 215 |
static const char* function = "boost::math::quantile(const students_t_distribution<%1%>&, %1%)"; |
| 216 |
RealType error_result; |
| 217 |
if(false == (detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity. |
| 218 |
function, df, &error_result, Policy()) |
| 219 |
&& detail::check_probability(function, probability, &error_result, Policy()))) |
| 220 |
return error_result;
|
| 221 |
// Special cases, regardless of degrees_of_freedom.
|
| 222 |
if (probability == 0) |
| 223 |
return -policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 224 |
if (probability == 1) |
| 225 |
return policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 226 |
if (probability == static_cast<RealType>(0.5)) |
| 227 |
return 0; // |
| 228 |
//
|
| 229 |
#if 0
|
| 230 |
// This next block is disabled in favour of a faster method than
|
| 231 |
// incomplete beta inverse, but code retained for future reference:
|
| 232 |
//
|
| 233 |
// Calculate quantile of Student's t using the incomplete beta function inverse:
|
| 234 |
probability = (probability > 0.5) ? 1 - probability : probability;
|
| 235 |
RealType t, x, y;
|
| 236 |
x = ibeta_inv(degrees_of_freedom / 2, RealType(0.5), 2 * probability, &y);
|
| 237 |
if(degrees_of_freedom * y > tools::max_value<RealType>() * x)
|
| 238 |
t = tools::overflow_error<RealType>(function);
|
| 239 |
else
|
| 240 |
t = sqrt(degrees_of_freedom * y / x);
|
| 241 |
//
|
| 242 |
// Figure out sign based on the size of p:
|
| 243 |
//
|
| 244 |
if(p < 0.5)
|
| 245 |
t = -t;
|
| 246 |
|
| 247 |
return t;
|
| 248 |
#endif
|
| 249 |
//
|
| 250 |
// Depending on how many digits RealType has, this may forward
|
| 251 |
// to the incomplete beta inverse as above. Otherwise uses a
|
| 252 |
// faster method that is accurate to ~15 digits everywhere
|
| 253 |
// and a couple of epsilon at double precision and in the central
|
| 254 |
// region where most use cases will occur...
|
| 255 |
//
|
| 256 |
return boost::math::detail::fast_students_t_quantile(df, probability, Policy());
|
| 257 |
} // quantile
|
| 258 |
|
| 259 |
template <class RealType, class Policy> |
| 260 |
inline RealType cdf(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c) |
| 261 |
{
|
| 262 |
return cdf(c.dist, -c.param);
|
| 263 |
} |
| 264 |
|
| 265 |
template <class RealType, class Policy> |
| 266 |
inline RealType quantile(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c) |
| 267 |
{
|
| 268 |
return -quantile(c.dist, c.param);
|
| 269 |
} |
| 270 |
|
| 271 |
//
|
| 272 |
// Parameter estimation follows:
|
| 273 |
//
|
| 274 |
namespace detail{
|
| 275 |
//
|
| 276 |
// Functors for finding degrees of freedom:
|
| 277 |
//
|
| 278 |
template <class RealType, class Policy> |
| 279 |
struct sample_size_func
|
| 280 |
{
|
| 281 |
sample_size_func(RealType a, RealType b, RealType s, RealType d) |
| 282 |
: alpha(a), beta(b), ratio(s*s/(d*d)) {}
|
| 283 |
|
| 284 |
RealType operator()(const RealType& df) |
| 285 |
{
|
| 286 |
if(df <= tools::min_value<RealType>())
|
| 287 |
{ //
|
| 288 |
return 1; |
| 289 |
} |
| 290 |
students_t_distribution<RealType, Policy> t(df); |
| 291 |
RealType qa = quantile(complement(t, alpha)); |
| 292 |
RealType qb = quantile(complement(t, beta)); |
| 293 |
qa += qb; |
| 294 |
qa *= qa; |
| 295 |
qa *= ratio; |
| 296 |
qa -= (df + 1);
|
| 297 |
return qa;
|
| 298 |
} |
| 299 |
RealType alpha, beta, ratio; |
| 300 |
}; |
| 301 |
|
| 302 |
} // namespace detail
|
| 303 |
|
| 304 |
template <class RealType, class Policy> |
| 305 |
RealType students_t_distribution<RealType, Policy>::find_degrees_of_freedom( |
| 306 |
RealType difference_from_mean, |
| 307 |
RealType alpha, |
| 308 |
RealType beta, |
| 309 |
RealType sd, |
| 310 |
RealType hint) |
| 311 |
{
|
| 312 |
static const char* function = "boost::math::students_t_distribution<%1%>::find_degrees_of_freedom"; |
| 313 |
//
|
| 314 |
// Check for domain errors:
|
| 315 |
//
|
| 316 |
RealType error_result; |
| 317 |
if(false == detail::check_probability( |
| 318 |
function, alpha, &error_result, Policy()) |
| 319 |
&& detail::check_probability(function, beta, &error_result, Policy())) |
| 320 |
return error_result;
|
| 321 |
|
| 322 |
if(hint <= 0) |
| 323 |
hint = 1;
|
| 324 |
|
| 325 |
detail::sample_size_func<RealType, Policy> f(alpha, beta, sd, difference_from_mean); |
| 326 |
tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>()); |
| 327 |
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 328 |
std::pair<RealType, RealType> r = tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy()); |
| 329 |
RealType result = r.first + (r.second - r.first) / 2;
|
| 330 |
if(max_iter >= policies::get_max_root_iterations<Policy>())
|
| 331 |
{
|
| 332 |
return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
| 333 |
" either there is no answer to how many degrees of freedom are required"
|
| 334 |
" or the answer is infinite. Current best guess is %1%", result, Policy());
|
| 335 |
} |
| 336 |
return result;
|
| 337 |
} |
| 338 |
|
| 339 |
template <class RealType, class Policy> |
| 340 |
inline RealType mode(const students_t_distribution<RealType, Policy>& /*dist*/) |
| 341 |
{
|
| 342 |
// Assume no checks on degrees of freedom are useful (unlike mean).
|
| 343 |
return 0; // Always zero by definition. |
| 344 |
} |
| 345 |
|
| 346 |
template <class RealType, class Policy> |
| 347 |
inline RealType median(const students_t_distribution<RealType, Policy>& /*dist*/) |
| 348 |
{
|
| 349 |
// Assume no checks on degrees of freedom are useful (unlike mean).
|
| 350 |
return 0; // Always zero by definition. |
| 351 |
} |
| 352 |
|
| 353 |
// See section 5.1 on moments at http://en.wikipedia.org/wiki/Student%27s_t-distribution
|
| 354 |
|
| 355 |
template <class RealType, class Policy> |
| 356 |
inline RealType mean(const students_t_distribution<RealType, Policy>& dist) |
| 357 |
{ // Revised for https://svn.boost.org/trac/boost/ticket/7177
|
| 358 |
RealType df = dist.degrees_of_freedom(); |
| 359 |
if(((boost::math::isnan)(df)) || (df <= 1) ) |
| 360 |
{ // mean is undefined for moment <= 1!
|
| 361 |
return policies::raise_domain_error<RealType>(
|
| 362 |
"boost::math::mean(students_t_distribution<%1%> const&, %1%)",
|
| 363 |
"Mean is undefined for degrees of freedom < 1 but got %1%.", df, Policy());
|
| 364 |
return std::numeric_limits<RealType>::quiet_NaN();
|
| 365 |
} |
| 366 |
return 0; |
| 367 |
} // mean
|
| 368 |
|
| 369 |
template <class RealType, class Policy> |
| 370 |
inline RealType variance(const students_t_distribution<RealType, Policy>& dist) |
| 371 |
{ // http://en.wikipedia.org/wiki/Student%27s_t-distribution
|
| 372 |
// Revised for https://svn.boost.org/trac/boost/ticket/7177
|
| 373 |
RealType df = dist.degrees_of_freedom(); |
| 374 |
if ((boost::math::isnan)(df) || (df <= 2)) |
| 375 |
{ // NaN or undefined for <= 2.
|
| 376 |
return policies::raise_domain_error<RealType>(
|
| 377 |
"boost::math::variance(students_t_distribution<%1%> const&, %1%)",
|
| 378 |
"variance is undefined for degrees of freedom <= 2, but got %1%.",
|
| 379 |
df, Policy()); |
| 380 |
return std::numeric_limits<RealType>::quiet_NaN(); // Undefined. |
| 381 |
} |
| 382 |
if ((boost::math::isinf)(df))
|
| 383 |
{ // +infinity.
|
| 384 |
return 1; |
| 385 |
} |
| 386 |
RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 387 |
// Use policies so that if policy requests lower precision,
|
| 388 |
// then get the normal distribution approximation earlier.
|
| 389 |
limit = static_cast<RealType>(1) / limit; // 1/eps |
| 390 |
// for 64-bit double 1/eps = 4503599627370496
|
| 391 |
if (df > limit)
|
| 392 |
{ // Special case for really big degrees_of_freedom > 1 / eps.
|
| 393 |
return 1; |
| 394 |
} |
| 395 |
else
|
| 396 |
{
|
| 397 |
return df / (df - 2); |
| 398 |
} |
| 399 |
} // variance
|
| 400 |
|
| 401 |
template <class RealType, class Policy> |
| 402 |
inline RealType skewness(const students_t_distribution<RealType, Policy>& dist) |
| 403 |
{
|
| 404 |
RealType df = dist.degrees_of_freedom(); |
| 405 |
if( ((boost::math::isnan)(df)) || (dist.degrees_of_freedom() <= 3)) |
| 406 |
{ // Undefined for moment k = 3.
|
| 407 |
return policies::raise_domain_error<RealType>(
|
| 408 |
"boost::math::skewness(students_t_distribution<%1%> const&, %1%)",
|
| 409 |
"Skewness is undefined for degrees of freedom <= 3, but got %1%.",
|
| 410 |
dist.degrees_of_freedom(), Policy()); |
| 411 |
return std::numeric_limits<RealType>::quiet_NaN();
|
| 412 |
} |
| 413 |
return 0; // For all valid df, including infinity. |
| 414 |
} // skewness
|
| 415 |
|
| 416 |
template <class RealType, class Policy> |
| 417 |
inline RealType kurtosis(const students_t_distribution<RealType, Policy>& dist) |
| 418 |
{
|
| 419 |
RealType df = dist.degrees_of_freedom(); |
| 420 |
if(((boost::math::isnan)(df)) || (df <= 4)) |
| 421 |
{ // Undefined or infinity for moment k = 4.
|
| 422 |
return policies::raise_domain_error<RealType>(
|
| 423 |
"boost::math::kurtosis(students_t_distribution<%1%> const&, %1%)",
|
| 424 |
"Kurtosis is undefined for degrees of freedom <= 4, but got %1%.",
|
| 425 |
df, Policy()); |
| 426 |
return std::numeric_limits<RealType>::quiet_NaN(); // Undefined. |
| 427 |
} |
| 428 |
if ((boost::math::isinf)(df))
|
| 429 |
{ // +infinity.
|
| 430 |
return 3; |
| 431 |
} |
| 432 |
RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 433 |
// Use policies so that if policy requests lower precision,
|
| 434 |
// then get the normal distribution approximation earlier.
|
| 435 |
limit = static_cast<RealType>(1) / limit; // 1/eps |
| 436 |
// for 64-bit double 1/eps = 4503599627370496
|
| 437 |
if (df > limit)
|
| 438 |
{ // Special case for really big degrees_of_freedom > 1 / eps.
|
| 439 |
return 3; |
| 440 |
} |
| 441 |
else
|
| 442 |
{
|
| 443 |
//return 3 * (df - 2) / (df - 4); re-arranged to
|
| 444 |
return 6 / (df - 4) + 3; |
| 445 |
} |
| 446 |
} // kurtosis
|
| 447 |
|
| 448 |
template <class RealType, class Policy> |
| 449 |
inline RealType kurtosis_excess(const students_t_distribution<RealType, Policy>& dist) |
| 450 |
{
|
| 451 |
// see http://mathworld.wolfram.com/Kurtosis.html
|
| 452 |
|
| 453 |
RealType df = dist.degrees_of_freedom(); |
| 454 |
if(((boost::math::isnan)(df)) || (df <= 4)) |
| 455 |
{ // Undefined or infinity for moment k = 4.
|
| 456 |
return policies::raise_domain_error<RealType>(
|
| 457 |
"boost::math::kurtosis_excess(students_t_distribution<%1%> const&, %1%)",
|
| 458 |
"Kurtosis_excess is undefined for degrees of freedom <= 4, but got %1%.",
|
| 459 |
df, Policy()); |
| 460 |
return std::numeric_limits<RealType>::quiet_NaN(); // Undefined. |
| 461 |
} |
| 462 |
if ((boost::math::isinf)(df))
|
| 463 |
{ // +infinity.
|
| 464 |
return 0; |
| 465 |
} |
| 466 |
RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 467 |
// Use policies so that if policy requests lower precision,
|
| 468 |
// then get the normal distribution approximation earlier.
|
| 469 |
limit = static_cast<RealType>(1) / limit; // 1/eps |
| 470 |
// for 64-bit double 1/eps = 4503599627370496
|
| 471 |
if (df > limit)
|
| 472 |
{ // Special case for really big degrees_of_freedom > 1 / eps.
|
| 473 |
return 0; |
| 474 |
} |
| 475 |
else
|
| 476 |
{
|
| 477 |
return 6 / (df - 4); |
| 478 |
} |
| 479 |
} |
| 480 |
|
| 481 |
} // namespace math
|
| 482 |
} // namespace boost
|
| 483 |
|
| 484 |
#ifdef BOOST_MSVC
|
| 485 |
# pragma warning(pop)
|
| 486 |
#endif
|
| 487 |
|
| 488 |
// This include must be at the end, *after* the accessors
|
| 489 |
// for this distribution have been defined, in order to
|
| 490 |
// keep compilers that support two-phase lookup happy.
|
| 491 |
#include <boost/math/distributions/detail/derived_accessors.hpp> |
| 492 |
|
| 493 |
#endif // BOOST_STATS_STUDENTS_T_HPP |