To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / any / include / boost / math / distributions / non_central_beta.hpp @ 160:cff480c41f97
History | View | Annotate | Download (35.9 KB)
| 1 |
// boost\math\distributions\non_central_beta.hpp
|
|---|---|
| 2 |
|
| 3 |
// Copyright John Maddock 2008.
|
| 4 |
|
| 5 |
// Use, modification and distribution are subject to the
|
| 6 |
// Boost Software License, Version 1.0.
|
| 7 |
// (See accompanying file LICENSE_1_0.txt
|
| 8 |
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
| 9 |
|
| 10 |
#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
|
| 11 |
#define BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
|
| 12 |
|
| 13 |
#include <boost/math/distributions/fwd.hpp> |
| 14 |
#include <boost/math/special_functions/beta.hpp> // for incomplete gamma. gamma_q |
| 15 |
#include <boost/math/distributions/complement.hpp> // complements |
| 16 |
#include <boost/math/distributions/beta.hpp> // central distribution |
| 17 |
#include <boost/math/distributions/detail/generic_mode.hpp> |
| 18 |
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks |
| 19 |
#include <boost/math/special_functions/fpclassify.hpp> // isnan. |
| 20 |
#include <boost/math/tools/roots.hpp> // for root finding. |
| 21 |
#include <boost/math/tools/series.hpp> |
| 22 |
|
| 23 |
namespace boost
|
| 24 |
{
|
| 25 |
namespace math
|
| 26 |
{
|
| 27 |
|
| 28 |
template <class RealType, class Policy> |
| 29 |
class non_central_beta_distribution; |
| 30 |
|
| 31 |
namespace detail{
|
| 32 |
|
| 33 |
template <class T, class Policy> |
| 34 |
T non_central_beta_p(T a, T b, T lam, T x, T y, const Policy& pol, T init_val = 0) |
| 35 |
{
|
| 36 |
BOOST_MATH_STD_USING |
| 37 |
using namespace boost::math; |
| 38 |
//
|
| 39 |
// Variables come first:
|
| 40 |
//
|
| 41 |
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 42 |
T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
| 43 |
T l2 = lam / 2;
|
| 44 |
//
|
| 45 |
// k is the starting point for iteration, and is the
|
| 46 |
// maximum of the poisson weighting term,
|
| 47 |
// note that unlike other similar code, we do not set
|
| 48 |
// k to zero, when l2 is small, as forward iteration
|
| 49 |
// is unstable:
|
| 50 |
//
|
| 51 |
int k = itrunc(l2);
|
| 52 |
if(k == 0) |
| 53 |
k = 1;
|
| 54 |
// Starting Poisson weight:
|
| 55 |
T pois = gamma_p_derivative(T(k+1), l2, pol);
|
| 56 |
if(pois == 0) |
| 57 |
return init_val;
|
| 58 |
// recurance term:
|
| 59 |
T xterm; |
| 60 |
// Starting beta term:
|
| 61 |
T beta = x < y |
| 62 |
? detail::ibeta_imp(T(a + k), b, x, pol, false, true, &xterm) |
| 63 |
: detail::ibeta_imp(b, T(a + k), y, pol, true, true, &xterm); |
| 64 |
|
| 65 |
xterm *= y / (a + b + k - 1);
|
| 66 |
T poisf(pois), betaf(beta), xtermf(xterm); |
| 67 |
T sum = init_val; |
| 68 |
|
| 69 |
if((beta == 0) && (xterm == 0)) |
| 70 |
return init_val;
|
| 71 |
|
| 72 |
//
|
| 73 |
// Backwards recursion first, this is the stable
|
| 74 |
// direction for recursion:
|
| 75 |
//
|
| 76 |
T last_term = 0;
|
| 77 |
boost::uintmax_t count = k; |
| 78 |
for(int i = k; i >= 0; --i) |
| 79 |
{
|
| 80 |
T term = beta * pois; |
| 81 |
sum += term; |
| 82 |
if(((fabs(term/sum) < errtol) && (last_term >= term)) || (term == 0)) |
| 83 |
{
|
| 84 |
count = k - i; |
| 85 |
break;
|
| 86 |
} |
| 87 |
pois *= i / l2; |
| 88 |
beta += xterm; |
| 89 |
xterm *= (a + i - 1) / (x * (a + b + i - 2)); |
| 90 |
last_term = term; |
| 91 |
} |
| 92 |
for(int i = k + 1; ; ++i) |
| 93 |
{
|
| 94 |
poisf *= l2 / i; |
| 95 |
xtermf *= (x * (a + b + i - 2)) / (a + i - 1); |
| 96 |
betaf -= xtermf; |
| 97 |
|
| 98 |
T term = poisf * betaf; |
| 99 |
sum += term; |
| 100 |
if((fabs(term/sum) < errtol) || (term == 0)) |
| 101 |
{
|
| 102 |
break;
|
| 103 |
} |
| 104 |
if(static_cast<boost::uintmax_t>(count + i - k) > max_iter) |
| 105 |
{
|
| 106 |
return policies::raise_evaluation_error(
|
| 107 |
"cdf(non_central_beta_distribution<%1%>, %1%)",
|
| 108 |
"Series did not converge, closest value was %1%", sum, pol);
|
| 109 |
} |
| 110 |
} |
| 111 |
return sum;
|
| 112 |
} |
| 113 |
|
| 114 |
template <class T, class Policy> |
| 115 |
T non_central_beta_q(T a, T b, T lam, T x, T y, const Policy& pol, T init_val = 0) |
| 116 |
{
|
| 117 |
BOOST_MATH_STD_USING |
| 118 |
using namespace boost::math; |
| 119 |
//
|
| 120 |
// Variables come first:
|
| 121 |
//
|
| 122 |
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 123 |
T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
| 124 |
T l2 = lam / 2;
|
| 125 |
//
|
| 126 |
// k is the starting point for iteration, and is the
|
| 127 |
// maximum of the poisson weighting term:
|
| 128 |
//
|
| 129 |
int k = itrunc(l2);
|
| 130 |
T pois; |
| 131 |
if(k <= 30) |
| 132 |
{
|
| 133 |
//
|
| 134 |
// Might as well start at 0 since we'll likely have this number of terms anyway:
|
| 135 |
//
|
| 136 |
if(a + b > 1) |
| 137 |
k = 0;
|
| 138 |
else if(k == 0) |
| 139 |
k = 1;
|
| 140 |
} |
| 141 |
if(k == 0) |
| 142 |
{
|
| 143 |
// Starting Poisson weight:
|
| 144 |
pois = exp(-l2); |
| 145 |
} |
| 146 |
else
|
| 147 |
{
|
| 148 |
// Starting Poisson weight:
|
| 149 |
pois = gamma_p_derivative(T(k+1), l2, pol);
|
| 150 |
} |
| 151 |
if(pois == 0) |
| 152 |
return init_val;
|
| 153 |
// recurance term:
|
| 154 |
T xterm; |
| 155 |
// Starting beta term:
|
| 156 |
T beta = x < y |
| 157 |
? detail::ibeta_imp(T(a + k), b, x, pol, true, true, &xterm) |
| 158 |
: detail::ibeta_imp(b, T(a + k), y, pol, false, true, &xterm); |
| 159 |
|
| 160 |
xterm *= y / (a + b + k - 1);
|
| 161 |
T poisf(pois), betaf(beta), xtermf(xterm); |
| 162 |
T sum = init_val; |
| 163 |
if((beta == 0) && (xterm == 0)) |
| 164 |
return init_val;
|
| 165 |
//
|
| 166 |
// Forwards recursion first, this is the stable
|
| 167 |
// direction for recursion, and the location
|
| 168 |
// of the bulk of the sum:
|
| 169 |
//
|
| 170 |
T last_term = 0;
|
| 171 |
boost::uintmax_t count = 0;
|
| 172 |
for(int i = k + 1; ; ++i) |
| 173 |
{
|
| 174 |
poisf *= l2 / i; |
| 175 |
xtermf *= (x * (a + b + i - 2)) / (a + i - 1); |
| 176 |
betaf += xtermf; |
| 177 |
|
| 178 |
T term = poisf * betaf; |
| 179 |
sum += term; |
| 180 |
if((fabs(term/sum) < errtol) && (last_term >= term))
|
| 181 |
{
|
| 182 |
count = i - k; |
| 183 |
break;
|
| 184 |
} |
| 185 |
if(static_cast<boost::uintmax_t>(i - k) > max_iter) |
| 186 |
{
|
| 187 |
return policies::raise_evaluation_error(
|
| 188 |
"cdf(non_central_beta_distribution<%1%>, %1%)",
|
| 189 |
"Series did not converge, closest value was %1%", sum, pol);
|
| 190 |
} |
| 191 |
last_term = term; |
| 192 |
} |
| 193 |
for(int i = k; i >= 0; --i) |
| 194 |
{
|
| 195 |
T term = beta * pois; |
| 196 |
sum += term; |
| 197 |
if(fabs(term/sum) < errtol)
|
| 198 |
{
|
| 199 |
break;
|
| 200 |
} |
| 201 |
if(static_cast<boost::uintmax_t>(count + k - i) > max_iter) |
| 202 |
{
|
| 203 |
return policies::raise_evaluation_error(
|
| 204 |
"cdf(non_central_beta_distribution<%1%>, %1%)",
|
| 205 |
"Series did not converge, closest value was %1%", sum, pol);
|
| 206 |
} |
| 207 |
pois *= i / l2; |
| 208 |
beta -= xterm; |
| 209 |
xterm *= (a + i - 1) / (x * (a + b + i - 2)); |
| 210 |
} |
| 211 |
return sum;
|
| 212 |
} |
| 213 |
|
| 214 |
template <class RealType, class Policy> |
| 215 |
inline RealType non_central_beta_cdf(RealType x, RealType y, RealType a, RealType b, RealType l, bool invert, const Policy&) |
| 216 |
{
|
| 217 |
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
| 218 |
typedef typename policies::normalise< |
| 219 |
Policy, |
| 220 |
policies::promote_float<false>,
|
| 221 |
policies::promote_double<false>,
|
| 222 |
policies::discrete_quantile<>, |
| 223 |
policies::assert_undefined<> >::type forwarding_policy; |
| 224 |
|
| 225 |
BOOST_MATH_STD_USING |
| 226 |
|
| 227 |
if(x == 0) |
| 228 |
return invert ? 1.0f : 0.0f; |
| 229 |
if(y == 0) |
| 230 |
return invert ? 0.0f : 1.0f; |
| 231 |
value_type result; |
| 232 |
value_type c = a + b + l / 2;
|
| 233 |
value_type cross = 1 - (b / c) * (1 + l / (2 * c * c)); |
| 234 |
if(l == 0) |
| 235 |
result = cdf(boost::math::beta_distribution<RealType, Policy>(a, b), x); |
| 236 |
else if(x > cross) |
| 237 |
{
|
| 238 |
// Complement is the smaller of the two:
|
| 239 |
result = detail::non_central_beta_q( |
| 240 |
static_cast<value_type>(a),
|
| 241 |
static_cast<value_type>(b),
|
| 242 |
static_cast<value_type>(l),
|
| 243 |
static_cast<value_type>(x),
|
| 244 |
static_cast<value_type>(y),
|
| 245 |
forwarding_policy(), |
| 246 |
static_cast<value_type>(invert ? 0 : -1)); |
| 247 |
invert = !invert; |
| 248 |
} |
| 249 |
else
|
| 250 |
{
|
| 251 |
result = detail::non_central_beta_p( |
| 252 |
static_cast<value_type>(a),
|
| 253 |
static_cast<value_type>(b),
|
| 254 |
static_cast<value_type>(l),
|
| 255 |
static_cast<value_type>(x),
|
| 256 |
static_cast<value_type>(y),
|
| 257 |
forwarding_policy(), |
| 258 |
static_cast<value_type>(invert ? -1 : 0)); |
| 259 |
} |
| 260 |
if(invert)
|
| 261 |
result = -result; |
| 262 |
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
|
| 263 |
result, |
| 264 |
"boost::math::non_central_beta_cdf<%1%>(%1%, %1%, %1%)");
|
| 265 |
} |
| 266 |
|
| 267 |
template <class T, class Policy> |
| 268 |
struct nc_beta_quantile_functor
|
| 269 |
{
|
| 270 |
nc_beta_quantile_functor(const non_central_beta_distribution<T,Policy>& d, T t, bool c) |
| 271 |
: dist(d), target(t), comp(c) {}
|
| 272 |
|
| 273 |
T operator()(const T& x) |
| 274 |
{
|
| 275 |
return comp ?
|
| 276 |
T(target - cdf(complement(dist, x))) |
| 277 |
: T(cdf(dist, x) - target); |
| 278 |
} |
| 279 |
|
| 280 |
private:
|
| 281 |
non_central_beta_distribution<T,Policy> dist; |
| 282 |
T target; |
| 283 |
bool comp;
|
| 284 |
}; |
| 285 |
|
| 286 |
//
|
| 287 |
// This is more or less a copy of bracket_and_solve_root, but
|
| 288 |
// modified to search only the interval [0,1] using similar
|
| 289 |
// heuristics.
|
| 290 |
//
|
| 291 |
template <class F, class T, class Tol, class Policy> |
| 292 |
std::pair<T, T> bracket_and_solve_root_01(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
| 293 |
{
|
| 294 |
BOOST_MATH_STD_USING |
| 295 |
static const char* function = "boost::math::tools::bracket_and_solve_root_01<%1%>"; |
| 296 |
//
|
| 297 |
// Set up inital brackets:
|
| 298 |
//
|
| 299 |
T a = guess; |
| 300 |
T b = a; |
| 301 |
T fa = f(a); |
| 302 |
T fb = fa; |
| 303 |
//
|
| 304 |
// Set up invocation count:
|
| 305 |
//
|
| 306 |
boost::uintmax_t count = max_iter - 1;
|
| 307 |
|
| 308 |
if((fa < 0) == (guess < 0 ? !rising : rising)) |
| 309 |
{
|
| 310 |
//
|
| 311 |
// Zero is to the right of b, so walk upwards
|
| 312 |
// until we find it:
|
| 313 |
//
|
| 314 |
while((boost::math::sign)(fb) == (boost::math::sign)(fa))
|
| 315 |
{
|
| 316 |
if(count == 0) |
| 317 |
{
|
| 318 |
b = policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol);
|
| 319 |
return std::make_pair(a, b);
|
| 320 |
} |
| 321 |
//
|
| 322 |
// Heuristic: every 20 iterations we double the growth factor in case the
|
| 323 |
// initial guess was *really* bad !
|
| 324 |
//
|
| 325 |
if((max_iter - count) % 20 == 0) |
| 326 |
factor *= 2;
|
| 327 |
//
|
| 328 |
// Now go ahead and move are guess by "factor",
|
| 329 |
// we do this by reducing 1-guess by factor:
|
| 330 |
//
|
| 331 |
a = b; |
| 332 |
fa = fb; |
| 333 |
b = 1 - ((1 - b) / factor); |
| 334 |
fb = f(b); |
| 335 |
--count; |
| 336 |
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
| 337 |
} |
| 338 |
} |
| 339 |
else
|
| 340 |
{
|
| 341 |
//
|
| 342 |
// Zero is to the left of a, so walk downwards
|
| 343 |
// until we find it:
|
| 344 |
//
|
| 345 |
while((boost::math::sign)(fb) == (boost::math::sign)(fa))
|
| 346 |
{
|
| 347 |
if(fabs(a) < tools::min_value<T>())
|
| 348 |
{
|
| 349 |
// Escape route just in case the answer is zero!
|
| 350 |
max_iter -= count; |
| 351 |
max_iter += 1;
|
| 352 |
return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0)); |
| 353 |
} |
| 354 |
if(count == 0) |
| 355 |
{
|
| 356 |
a = policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol);
|
| 357 |
return std::make_pair(a, b);
|
| 358 |
} |
| 359 |
//
|
| 360 |
// Heuristic: every 20 iterations we double the growth factor in case the
|
| 361 |
// initial guess was *really* bad !
|
| 362 |
//
|
| 363 |
if((max_iter - count) % 20 == 0) |
| 364 |
factor *= 2;
|
| 365 |
//
|
| 366 |
// Now go ahead and move are guess by "factor":
|
| 367 |
//
|
| 368 |
b = a; |
| 369 |
fb = fa; |
| 370 |
a /= factor; |
| 371 |
fa = f(a); |
| 372 |
--count; |
| 373 |
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
| 374 |
} |
| 375 |
} |
| 376 |
max_iter -= count; |
| 377 |
max_iter += 1;
|
| 378 |
std::pair<T, T> r = toms748_solve( |
| 379 |
f, |
| 380 |
(a < 0 ? b : a),
|
| 381 |
(a < 0 ? a : b),
|
| 382 |
(a < 0 ? fb : fa),
|
| 383 |
(a < 0 ? fa : fb),
|
| 384 |
tol, |
| 385 |
count, |
| 386 |
pol); |
| 387 |
max_iter += count; |
| 388 |
BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count); |
| 389 |
return r;
|
| 390 |
} |
| 391 |
|
| 392 |
template <class RealType, class Policy> |
| 393 |
RealType nc_beta_quantile(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& p, bool comp) |
| 394 |
{
|
| 395 |
static const char* function = "quantile(non_central_beta_distribution<%1%>, %1%)"; |
| 396 |
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
| 397 |
typedef typename policies::normalise< |
| 398 |
Policy, |
| 399 |
policies::promote_float<false>,
|
| 400 |
policies::promote_double<false>,
|
| 401 |
policies::discrete_quantile<>, |
| 402 |
policies::assert_undefined<> >::type forwarding_policy; |
| 403 |
|
| 404 |
value_type a = dist.alpha(); |
| 405 |
value_type b = dist.beta(); |
| 406 |
value_type l = dist.non_centrality(); |
| 407 |
value_type r; |
| 408 |
if(!beta_detail::check_alpha(
|
| 409 |
function, |
| 410 |
a, &r, Policy()) |
| 411 |
|| |
| 412 |
!beta_detail::check_beta( |
| 413 |
function, |
| 414 |
b, &r, Policy()) |
| 415 |
|| |
| 416 |
!detail::check_non_centrality( |
| 417 |
function, |
| 418 |
l, |
| 419 |
&r, |
| 420 |
Policy()) |
| 421 |
|| |
| 422 |
!detail::check_probability( |
| 423 |
function, |
| 424 |
static_cast<value_type>(p),
|
| 425 |
&r, |
| 426 |
Policy())) |
| 427 |
return (RealType)r;
|
| 428 |
//
|
| 429 |
// Special cases first:
|
| 430 |
//
|
| 431 |
if(p == 0) |
| 432 |
return comp
|
| 433 |
? 1.0f |
| 434 |
: 0.0f; |
| 435 |
if(p == 1) |
| 436 |
return !comp
|
| 437 |
? 1.0f |
| 438 |
: 0.0f; |
| 439 |
|
| 440 |
value_type c = a + b + l / 2;
|
| 441 |
value_type mean = 1 - (b / c) * (1 + l / (2 * c * c)); |
| 442 |
/*
|
| 443 |
//
|
| 444 |
// Calculate a normal approximation to the quantile,
|
| 445 |
// uses mean and variance approximations from:
|
| 446 |
// Algorithm AS 310:
|
| 447 |
// Computing the Non-Central Beta Distribution Function
|
| 448 |
// R. Chattamvelli; R. Shanmugam
|
| 449 |
// Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.
|
| 450 |
//
|
| 451 |
// Unfortunately, when this is wrong it tends to be *very*
|
| 452 |
// wrong, so it's disabled for now, even though it often
|
| 453 |
// gets the initial guess quite close. Probably we could
|
| 454 |
// do much better by factoring in the skewness if only
|
| 455 |
// we could calculate it....
|
| 456 |
//
|
| 457 |
value_type delta = l / 2;
|
| 458 |
value_type delta2 = delta * delta;
|
| 459 |
value_type delta3 = delta * delta2;
|
| 460 |
value_type delta4 = delta2 * delta2;
|
| 461 |
value_type G = c * (c + 1) + delta;
|
| 462 |
value_type alpha = a + b;
|
| 463 |
value_type alpha2 = alpha * alpha;
|
| 464 |
value_type eta = (2 * alpha + 1) * (2 * alpha + 1) + 1;
|
| 465 |
value_type H = 3 * alpha2 + 5 * alpha + 2;
|
| 466 |
value_type F = alpha2 * (alpha + 1) + H * delta
|
| 467 |
+ (2 * alpha + 4) * delta2 + delta3;
|
| 468 |
value_type P = (3 * alpha + 1) * (9 * alpha + 17)
|
| 469 |
+ 2 * alpha * (3 * alpha + 2) * (3 * alpha + 4) + 15;
|
| 470 |
value_type Q = 54 * alpha2 + 162 * alpha + 130;
|
| 471 |
value_type R = 6 * (6 * alpha + 11);
|
| 472 |
value_type D = delta
|
| 473 |
* (H * H + 2 * P * delta + Q * delta2 + R * delta3 + 9 * delta4);
|
| 474 |
value_type variance = (b / G)
|
| 475 |
* (1 + delta * (l * l + 3 * l + eta) / (G * G))
|
| 476 |
- (b * b / F) * (1 + D / (F * F));
|
| 477 |
value_type sd = sqrt(variance);
|
| 478 |
|
| 479 |
value_type guess = comp
|
| 480 |
? quantile(complement(normal_distribution<RealType, Policy>(static_cast<RealType>(mean), static_cast<RealType>(sd)), p))
|
| 481 |
: quantile(normal_distribution<RealType, Policy>(static_cast<RealType>(mean), static_cast<RealType>(sd)), p);
|
| 482 |
|
| 483 |
if(guess >= 1)
|
| 484 |
guess = mean;
|
| 485 |
if(guess <= tools::min_value<value_type>())
|
| 486 |
guess = mean;
|
| 487 |
*/
|
| 488 |
value_type guess = mean; |
| 489 |
detail::nc_beta_quantile_functor<value_type, Policy> |
| 490 |
f(non_central_beta_distribution<value_type, Policy>(a, b, l), p, comp); |
| 491 |
tools::eps_tolerance<value_type> tol(policies::digits<RealType, Policy>()); |
| 492 |
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 493 |
|
| 494 |
std::pair<value_type, value_type> ir |
| 495 |
= bracket_and_solve_root_01( |
| 496 |
f, guess, value_type(2.5), true, tol, |
| 497 |
max_iter, Policy()); |
| 498 |
value_type result = ir.first + (ir.second - ir.first) / 2;
|
| 499 |
|
| 500 |
if(max_iter >= policies::get_max_root_iterations<Policy>())
|
| 501 |
{
|
| 502 |
return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
| 503 |
" either there is no answer to quantile of the non central beta distribution"
|
| 504 |
" or the answer is infinite. Current best guess is %1%",
|
| 505 |
policies::checked_narrowing_cast<RealType, forwarding_policy>( |
| 506 |
result, |
| 507 |
function), Policy()); |
| 508 |
} |
| 509 |
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
|
| 510 |
result, |
| 511 |
function); |
| 512 |
} |
| 513 |
|
| 514 |
template <class T, class Policy> |
| 515 |
T non_central_beta_pdf(T a, T b, T lam, T x, T y, const Policy& pol)
|
| 516 |
{
|
| 517 |
BOOST_MATH_STD_USING |
| 518 |
//
|
| 519 |
// Special cases:
|
| 520 |
//
|
| 521 |
if((x == 0) || (y == 0)) |
| 522 |
return 0; |
| 523 |
//
|
| 524 |
// Variables come first:
|
| 525 |
//
|
| 526 |
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 527 |
T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
| 528 |
T l2 = lam / 2;
|
| 529 |
//
|
| 530 |
// k is the starting point for iteration, and is the
|
| 531 |
// maximum of the poisson weighting term:
|
| 532 |
//
|
| 533 |
int k = itrunc(l2);
|
| 534 |
// Starting Poisson weight:
|
| 535 |
T pois = gamma_p_derivative(T(k+1), l2, pol);
|
| 536 |
// Starting beta term:
|
| 537 |
T beta = x < y ? |
| 538 |
ibeta_derivative(a + k, b, x, pol) |
| 539 |
: ibeta_derivative(b, a + k, y, pol); |
| 540 |
T sum = 0;
|
| 541 |
T poisf(pois); |
| 542 |
T betaf(beta); |
| 543 |
|
| 544 |
//
|
| 545 |
// Stable backwards recursion first:
|
| 546 |
//
|
| 547 |
boost::uintmax_t count = k; |
| 548 |
for(int i = k; i >= 0; --i) |
| 549 |
{
|
| 550 |
T term = beta * pois; |
| 551 |
sum += term; |
| 552 |
if((fabs(term/sum) < errtol) || (term == 0)) |
| 553 |
{
|
| 554 |
count = k - i; |
| 555 |
break;
|
| 556 |
} |
| 557 |
pois *= i / l2; |
| 558 |
beta *= (a + i - 1) / (x * (a + i + b - 1)); |
| 559 |
} |
| 560 |
for(int i = k + 1; ; ++i) |
| 561 |
{
|
| 562 |
poisf *= l2 / i; |
| 563 |
betaf *= x * (a + b + i - 1) / (a + i - 1); |
| 564 |
|
| 565 |
T term = poisf * betaf; |
| 566 |
sum += term; |
| 567 |
if((fabs(term/sum) < errtol) || (term == 0)) |
| 568 |
{
|
| 569 |
break;
|
| 570 |
} |
| 571 |
if(static_cast<boost::uintmax_t>(count + i - k) > max_iter) |
| 572 |
{
|
| 573 |
return policies::raise_evaluation_error(
|
| 574 |
"pdf(non_central_beta_distribution<%1%>, %1%)",
|
| 575 |
"Series did not converge, closest value was %1%", sum, pol);
|
| 576 |
} |
| 577 |
} |
| 578 |
return sum;
|
| 579 |
} |
| 580 |
|
| 581 |
template <class RealType, class Policy> |
| 582 |
RealType nc_beta_pdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x) |
| 583 |
{
|
| 584 |
BOOST_MATH_STD_USING |
| 585 |
static const char* function = "pdf(non_central_beta_distribution<%1%>, %1%)"; |
| 586 |
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
| 587 |
typedef typename policies::normalise< |
| 588 |
Policy, |
| 589 |
policies::promote_float<false>,
|
| 590 |
policies::promote_double<false>,
|
| 591 |
policies::discrete_quantile<>, |
| 592 |
policies::assert_undefined<> >::type forwarding_policy; |
| 593 |
|
| 594 |
value_type a = dist.alpha(); |
| 595 |
value_type b = dist.beta(); |
| 596 |
value_type l = dist.non_centrality(); |
| 597 |
value_type r; |
| 598 |
if(!beta_detail::check_alpha(
|
| 599 |
function, |
| 600 |
a, &r, Policy()) |
| 601 |
|| |
| 602 |
!beta_detail::check_beta( |
| 603 |
function, |
| 604 |
b, &r, Policy()) |
| 605 |
|| |
| 606 |
!detail::check_non_centrality( |
| 607 |
function, |
| 608 |
l, |
| 609 |
&r, |
| 610 |
Policy()) |
| 611 |
|| |
| 612 |
!beta_detail::check_x( |
| 613 |
function, |
| 614 |
static_cast<value_type>(x),
|
| 615 |
&r, |
| 616 |
Policy())) |
| 617 |
return (RealType)r;
|
| 618 |
|
| 619 |
if(l == 0) |
| 620 |
return pdf(boost::math::beta_distribution<RealType, Policy>(dist.alpha(), dist.beta()), x);
|
| 621 |
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
|
| 622 |
non_central_beta_pdf(a, b, l, static_cast<value_type>(x), value_type(1 - static_cast<value_type>(x)), forwarding_policy()), |
| 623 |
"function");
|
| 624 |
} |
| 625 |
|
| 626 |
template <class T> |
| 627 |
struct hypergeometric_2F2_sum
|
| 628 |
{
|
| 629 |
typedef T result_type;
|
| 630 |
hypergeometric_2F2_sum(T a1_, T a2_, T b1_, T b2_, T z_) : a1(a1_), a2(a2_), b1(b1_), b2(b2_), z(z_), term(1), k(0) {} |
| 631 |
T operator()()
|
| 632 |
{
|
| 633 |
T result = term; |
| 634 |
term *= a1 * a2 / (b1 * b2); |
| 635 |
a1 += 1;
|
| 636 |
a2 += 1;
|
| 637 |
b1 += 1;
|
| 638 |
b2 += 1;
|
| 639 |
k += 1;
|
| 640 |
term /= k; |
| 641 |
term *= z; |
| 642 |
return result;
|
| 643 |
} |
| 644 |
T a1, a2, b1, b2, z, term, k; |
| 645 |
}; |
| 646 |
|
| 647 |
template <class T, class Policy> |
| 648 |
T hypergeometric_2F2(T a1, T a2, T b1, T b2, T z, const Policy& pol)
|
| 649 |
{
|
| 650 |
typedef typename policies::evaluation<T, Policy>::type value_type; |
| 651 |
|
| 652 |
const char* function = "boost::math::detail::hypergeometric_2F2<%1%>(%1%,%1%,%1%,%1%,%1%)"; |
| 653 |
|
| 654 |
hypergeometric_2F2_sum<value_type> s(a1, a2, b1, b2, z); |
| 655 |
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 656 |
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) |
| 657 |
value_type zero = 0;
|
| 658 |
value_type result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<value_type, Policy>(), max_iter, zero); |
| 659 |
#else
|
| 660 |
value_type result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<value_type, Policy>(), max_iter); |
| 661 |
#endif
|
| 662 |
policies::check_series_iterations<T>(function, max_iter, pol); |
| 663 |
return policies::checked_narrowing_cast<T, Policy>(result, function);
|
| 664 |
} |
| 665 |
|
| 666 |
} // namespace detail
|
| 667 |
|
| 668 |
template <class RealType = double, class Policy = policies::policy<> > |
| 669 |
class non_central_beta_distribution |
| 670 |
{
|
| 671 |
public:
|
| 672 |
typedef RealType value_type;
|
| 673 |
typedef Policy policy_type;
|
| 674 |
|
| 675 |
non_central_beta_distribution(RealType a_, RealType b_, RealType lambda) : a(a_), b(b_), ncp(lambda) |
| 676 |
{
|
| 677 |
const char* function = "boost::math::non_central_beta_distribution<%1%>::non_central_beta_distribution(%1%,%1%)"; |
| 678 |
RealType r; |
| 679 |
beta_detail::check_alpha( |
| 680 |
function, |
| 681 |
a, &r, Policy()); |
| 682 |
beta_detail::check_beta( |
| 683 |
function, |
| 684 |
b, &r, Policy()); |
| 685 |
detail::check_non_centrality( |
| 686 |
function, |
| 687 |
lambda, |
| 688 |
&r, |
| 689 |
Policy()); |
| 690 |
} // non_central_beta_distribution constructor.
|
| 691 |
|
| 692 |
RealType alpha() const
|
| 693 |
{ // Private data getter function.
|
| 694 |
return a;
|
| 695 |
} |
| 696 |
RealType beta() const
|
| 697 |
{ // Private data getter function.
|
| 698 |
return b;
|
| 699 |
} |
| 700 |
RealType non_centrality() const
|
| 701 |
{ // Private data getter function.
|
| 702 |
return ncp;
|
| 703 |
} |
| 704 |
private:
|
| 705 |
// Data member, initialized by constructor.
|
| 706 |
RealType a; // alpha.
|
| 707 |
RealType b; // beta.
|
| 708 |
RealType ncp; // non-centrality parameter
|
| 709 |
}; // template <class RealType, class Policy> class non_central_beta_distribution
|
| 710 |
|
| 711 |
typedef non_central_beta_distribution<double> non_central_beta; // Reserved name of type double. |
| 712 |
|
| 713 |
// Non-member functions to give properties of the distribution.
|
| 714 |
|
| 715 |
template <class RealType, class Policy> |
| 716 |
inline const std::pair<RealType, RealType> range(const non_central_beta_distribution<RealType, Policy>& /* dist */) |
| 717 |
{ // Range of permissible values for random variable k.
|
| 718 |
using boost::math::tools::max_value;
|
| 719 |
return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1)); |
| 720 |
} |
| 721 |
|
| 722 |
template <class RealType, class Policy> |
| 723 |
inline const std::pair<RealType, RealType> support(const non_central_beta_distribution<RealType, Policy>& /* dist */) |
| 724 |
{ // Range of supported values for random variable k.
|
| 725 |
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
| 726 |
using boost::math::tools::max_value;
|
| 727 |
return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1)); |
| 728 |
} |
| 729 |
|
| 730 |
template <class RealType, class Policy> |
| 731 |
inline RealType mode(const non_central_beta_distribution<RealType, Policy>& dist) |
| 732 |
{ // mode.
|
| 733 |
static const char* function = "mode(non_central_beta_distribution<%1%> const&)"; |
| 734 |
|
| 735 |
RealType a = dist.alpha(); |
| 736 |
RealType b = dist.beta(); |
| 737 |
RealType l = dist.non_centrality(); |
| 738 |
RealType r; |
| 739 |
if(!beta_detail::check_alpha(
|
| 740 |
function, |
| 741 |
a, &r, Policy()) |
| 742 |
|| |
| 743 |
!beta_detail::check_beta( |
| 744 |
function, |
| 745 |
b, &r, Policy()) |
| 746 |
|| |
| 747 |
!detail::check_non_centrality( |
| 748 |
function, |
| 749 |
l, |
| 750 |
&r, |
| 751 |
Policy())) |
| 752 |
return (RealType)r;
|
| 753 |
RealType c = a + b + l / 2;
|
| 754 |
RealType mean = 1 - (b / c) * (1 + l / (2 * c * c)); |
| 755 |
return detail::generic_find_mode_01(
|
| 756 |
dist, |
| 757 |
mean, |
| 758 |
function); |
| 759 |
} |
| 760 |
|
| 761 |
//
|
| 762 |
// We don't have the necessary information to implement
|
| 763 |
// these at present. These are just disabled for now,
|
| 764 |
// prototypes retained so we can fill in the blanks
|
| 765 |
// later:
|
| 766 |
//
|
| 767 |
template <class RealType, class Policy> |
| 768 |
inline RealType mean(const non_central_beta_distribution<RealType, Policy>& dist) |
| 769 |
{
|
| 770 |
BOOST_MATH_STD_USING |
| 771 |
RealType a = dist.alpha(); |
| 772 |
RealType b = dist.beta(); |
| 773 |
RealType d = dist.non_centrality(); |
| 774 |
RealType apb = a + b; |
| 775 |
return exp(-d / 2) * a * detail::hypergeometric_2F2<RealType, Policy>(1 + a, apb, a, 1 + apb, d / 2, Policy()) / apb; |
| 776 |
} // mean
|
| 777 |
|
| 778 |
template <class RealType, class Policy> |
| 779 |
inline RealType variance(const non_central_beta_distribution<RealType, Policy>& dist) |
| 780 |
{
|
| 781 |
//
|
| 782 |
// Relative error of this function may be arbitarily large... absolute
|
| 783 |
// error will be small however... that's the best we can do for now.
|
| 784 |
//
|
| 785 |
BOOST_MATH_STD_USING |
| 786 |
RealType a = dist.alpha(); |
| 787 |
RealType b = dist.beta(); |
| 788 |
RealType d = dist.non_centrality(); |
| 789 |
RealType apb = a + b; |
| 790 |
RealType result = detail::hypergeometric_2F2(RealType(1 + a), apb, a, RealType(1 + apb), RealType(d / 2), Policy()); |
| 791 |
result *= result * -exp(-d) * a * a / (apb * apb); |
| 792 |
result += exp(-d / 2) * a * (1 + a) * detail::hypergeometric_2F2(RealType(2 + a), apb, a, RealType(2 + apb), RealType(d / 2), Policy()) / (apb * (1 + apb)); |
| 793 |
return result;
|
| 794 |
} |
| 795 |
|
| 796 |
// RealType standard_deviation(const non_central_beta_distribution<RealType, Policy>& dist)
|
| 797 |
// standard_deviation provided by derived accessors.
|
| 798 |
template <class RealType, class Policy> |
| 799 |
inline RealType skewness(const non_central_beta_distribution<RealType, Policy>& /*dist*/) |
| 800 |
{ // skewness = sqrt(l).
|
| 801 |
const char* function = "boost::math::non_central_beta_distribution<%1%>::skewness()"; |
| 802 |
typedef typename Policy::assert_undefined_type assert_type; |
| 803 |
BOOST_STATIC_ASSERT(assert_type::value == 0);
|
| 804 |
|
| 805 |
return policies::raise_evaluation_error<RealType>(
|
| 806 |
function, |
| 807 |
"This function is not yet implemented, the only sensible result is %1%.",
|
| 808 |
std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
|
| 809 |
} |
| 810 |
|
| 811 |
template <class RealType, class Policy> |
| 812 |
inline RealType kurtosis_excess(const non_central_beta_distribution<RealType, Policy>& /*dist*/) |
| 813 |
{
|
| 814 |
const char* function = "boost::math::non_central_beta_distribution<%1%>::kurtosis_excess()"; |
| 815 |
typedef typename Policy::assert_undefined_type assert_type; |
| 816 |
BOOST_STATIC_ASSERT(assert_type::value == 0);
|
| 817 |
|
| 818 |
return policies::raise_evaluation_error<RealType>(
|
| 819 |
function, |
| 820 |
"This function is not yet implemented, the only sensible result is %1%.",
|
| 821 |
std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
|
| 822 |
} // kurtosis_excess
|
| 823 |
|
| 824 |
template <class RealType, class Policy> |
| 825 |
inline RealType kurtosis(const non_central_beta_distribution<RealType, Policy>& dist) |
| 826 |
{
|
| 827 |
return kurtosis_excess(dist) + 3; |
| 828 |
} |
| 829 |
|
| 830 |
template <class RealType, class Policy> |
| 831 |
inline RealType pdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x) |
| 832 |
{ // Probability Density/Mass Function.
|
| 833 |
return detail::nc_beta_pdf(dist, x);
|
| 834 |
} // pdf
|
| 835 |
|
| 836 |
template <class RealType, class Policy> |
| 837 |
RealType cdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x) |
| 838 |
{
|
| 839 |
const char* function = "boost::math::non_central_beta_distribution<%1%>::cdf(%1%)"; |
| 840 |
RealType a = dist.alpha(); |
| 841 |
RealType b = dist.beta(); |
| 842 |
RealType l = dist.non_centrality(); |
| 843 |
RealType r; |
| 844 |
if(!beta_detail::check_alpha(
|
| 845 |
function, |
| 846 |
a, &r, Policy()) |
| 847 |
|| |
| 848 |
!beta_detail::check_beta( |
| 849 |
function, |
| 850 |
b, &r, Policy()) |
| 851 |
|| |
| 852 |
!detail::check_non_centrality( |
| 853 |
function, |
| 854 |
l, |
| 855 |
&r, |
| 856 |
Policy()) |
| 857 |
|| |
| 858 |
!beta_detail::check_x( |
| 859 |
function, |
| 860 |
x, |
| 861 |
&r, |
| 862 |
Policy())) |
| 863 |
return (RealType)r;
|
| 864 |
|
| 865 |
if(l == 0) |
| 866 |
return cdf(beta_distribution<RealType, Policy>(a, b), x);
|
| 867 |
|
| 868 |
return detail::non_central_beta_cdf(x, RealType(1 - x), a, b, l, false, Policy()); |
| 869 |
} // cdf
|
| 870 |
|
| 871 |
template <class RealType, class Policy> |
| 872 |
RealType cdf(const complemented2_type<non_central_beta_distribution<RealType, Policy>, RealType>& c)
|
| 873 |
{ // Complemented Cumulative Distribution Function
|
| 874 |
const char* function = "boost::math::non_central_beta_distribution<%1%>::cdf(%1%)"; |
| 875 |
non_central_beta_distribution<RealType, Policy> const& dist = c.dist;
|
| 876 |
RealType a = dist.alpha(); |
| 877 |
RealType b = dist.beta(); |
| 878 |
RealType l = dist.non_centrality(); |
| 879 |
RealType x = c.param; |
| 880 |
RealType r; |
| 881 |
if(!beta_detail::check_alpha(
|
| 882 |
function, |
| 883 |
a, &r, Policy()) |
| 884 |
|| |
| 885 |
!beta_detail::check_beta( |
| 886 |
function, |
| 887 |
b, &r, Policy()) |
| 888 |
|| |
| 889 |
!detail::check_non_centrality( |
| 890 |
function, |
| 891 |
l, |
| 892 |
&r, |
| 893 |
Policy()) |
| 894 |
|| |
| 895 |
!beta_detail::check_x( |
| 896 |
function, |
| 897 |
x, |
| 898 |
&r, |
| 899 |
Policy())) |
| 900 |
return (RealType)r;
|
| 901 |
|
| 902 |
if(l == 0) |
| 903 |
return cdf(complement(beta_distribution<RealType, Policy>(a, b), x));
|
| 904 |
|
| 905 |
return detail::non_central_beta_cdf(x, RealType(1 - x), a, b, l, true, Policy()); |
| 906 |
} // ccdf
|
| 907 |
|
| 908 |
template <class RealType, class Policy> |
| 909 |
inline RealType quantile(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& p) |
| 910 |
{ // Quantile (or Percent Point) function.
|
| 911 |
return detail::nc_beta_quantile(dist, p, false); |
| 912 |
} // quantile
|
| 913 |
|
| 914 |
template <class RealType, class Policy> |
| 915 |
inline RealType quantile(const complemented2_type<non_central_beta_distribution<RealType, Policy>, RealType>& c) |
| 916 |
{ // Quantile (or Percent Point) function.
|
| 917 |
return detail::nc_beta_quantile(c.dist, c.param, true); |
| 918 |
} // quantile complement.
|
| 919 |
|
| 920 |
} // namespace math
|
| 921 |
} // namespace boost
|
| 922 |
|
| 923 |
// This include must be at the end, *after* the accessors
|
| 924 |
// for this distribution have been defined, in order to
|
| 925 |
// keep compilers that support two-phase lookup happy.
|
| 926 |
#include <boost/math/distributions/detail/derived_accessors.hpp> |
| 927 |
|
| 928 |
#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP |
| 929 |
|