To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / any / include / boost / math / distributions / negative_binomial.hpp @ 160:cff480c41f97
History | View | Annotate | Download (26.1 KB)
| 1 |
// boost\math\special_functions\negative_binomial.hpp
|
|---|---|
| 2 |
|
| 3 |
// Copyright Paul A. Bristow 2007.
|
| 4 |
// Copyright John Maddock 2007.
|
| 5 |
|
| 6 |
// Use, modification and distribution are subject to the
|
| 7 |
// Boost Software License, Version 1.0.
|
| 8 |
// (See accompanying file LICENSE_1_0.txt
|
| 9 |
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
| 10 |
|
| 11 |
// http://en.wikipedia.org/wiki/negative_binomial_distribution
|
| 12 |
// http://mathworld.wolfram.com/NegativeBinomialDistribution.html
|
| 13 |
// http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html
|
| 14 |
|
| 15 |
// The negative binomial distribution NegativeBinomialDistribution[n, p]
|
| 16 |
// is the distribution of the number (k) of failures that occur in a sequence of trials before
|
| 17 |
// r successes have occurred, where the probability of success in each trial is p.
|
| 18 |
|
| 19 |
// In a sequence of Bernoulli trials or events
|
| 20 |
// (independent, yes or no, succeed or fail) with success_fraction probability p,
|
| 21 |
// negative_binomial is the probability that k or fewer failures
|
| 22 |
// preceed the r th trial's success.
|
| 23 |
// random variable k is the number of failures (NOT the probability).
|
| 24 |
|
| 25 |
// Negative_binomial distribution is a discrete probability distribution.
|
| 26 |
// But note that the negative binomial distribution
|
| 27 |
// (like others including the binomial, Poisson & Bernoulli)
|
| 28 |
// is strictly defined as a discrete function: only integral values of k are envisaged.
|
| 29 |
// However because of the method of calculation using a continuous gamma function,
|
| 30 |
// it is convenient to treat it as if a continous function,
|
| 31 |
// and permit non-integral values of k.
|
| 32 |
|
| 33 |
// However, by default the policy is to use discrete_quantile_policy.
|
| 34 |
|
| 35 |
// To enforce the strict mathematical model, users should use conversion
|
| 36 |
// on k outside this function to ensure that k is integral.
|
| 37 |
|
| 38 |
// MATHCAD cumulative negative binomial pnbinom(k, n, p)
|
| 39 |
|
| 40 |
// Implementation note: much greater speed, and perhaps greater accuracy,
|
| 41 |
// might be achieved for extreme values by using a normal approximation.
|
| 42 |
// This is NOT been tested or implemented.
|
| 43 |
|
| 44 |
#ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
|
| 45 |
#define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
|
| 46 |
|
| 47 |
#include <boost/math/distributions/fwd.hpp> |
| 48 |
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b). |
| 49 |
#include <boost/math/distributions/complement.hpp> // complement. |
| 50 |
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error. |
| 51 |
#include <boost/math/special_functions/fpclassify.hpp> // isnan. |
| 52 |
#include <boost/math/tools/roots.hpp> // for root finding. |
| 53 |
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> |
| 54 |
|
| 55 |
#include <boost/type_traits/is_floating_point.hpp> |
| 56 |
#include <boost/type_traits/is_integral.hpp> |
| 57 |
#include <boost/type_traits/is_same.hpp> |
| 58 |
#include <boost/mpl/if.hpp> |
| 59 |
|
| 60 |
#include <limits> // using std::numeric_limits; |
| 61 |
#include <utility> |
| 62 |
|
| 63 |
#if defined (BOOST_MSVC)
|
| 64 |
# pragma warning(push)
|
| 65 |
// This believed not now necessary, so commented out.
|
| 66 |
//# pragma warning(disable: 4702) // unreachable code.
|
| 67 |
// in domain_error_imp in error_handling.
|
| 68 |
#endif
|
| 69 |
|
| 70 |
namespace boost
|
| 71 |
{
|
| 72 |
namespace math
|
| 73 |
{
|
| 74 |
namespace negative_binomial_detail
|
| 75 |
{
|
| 76 |
// Common error checking routines for negative binomial distribution functions:
|
| 77 |
template <class RealType, class Policy> |
| 78 |
inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol) |
| 79 |
{
|
| 80 |
if( !(boost::math::isfinite)(r) || (r <= 0) ) |
| 81 |
{
|
| 82 |
*result = policies::raise_domain_error<RealType>( |
| 83 |
function, |
| 84 |
"Number of successes argument is %1%, but must be > 0 !", r, pol);
|
| 85 |
return false; |
| 86 |
} |
| 87 |
return true; |
| 88 |
} |
| 89 |
template <class RealType, class Policy> |
| 90 |
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) |
| 91 |
{
|
| 92 |
if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) |
| 93 |
{
|
| 94 |
*result = policies::raise_domain_error<RealType>( |
| 95 |
function, |
| 96 |
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
|
| 97 |
return false; |
| 98 |
} |
| 99 |
return true; |
| 100 |
} |
| 101 |
template <class RealType, class Policy> |
| 102 |
inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol) |
| 103 |
{
|
| 104 |
return check_success_fraction(function, p, result, pol)
|
| 105 |
&& check_successes(function, r, result, pol); |
| 106 |
} |
| 107 |
template <class RealType, class Policy> |
| 108 |
inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol) |
| 109 |
{
|
| 110 |
if(check_dist(function, r, p, result, pol) == false) |
| 111 |
{
|
| 112 |
return false; |
| 113 |
} |
| 114 |
if( !(boost::math::isfinite)(k) || (k < 0) ) |
| 115 |
{ // Check k failures.
|
| 116 |
*result = policies::raise_domain_error<RealType>( |
| 117 |
function, |
| 118 |
"Number of failures argument is %1%, but must be >= 0 !", k, pol);
|
| 119 |
return false; |
| 120 |
} |
| 121 |
return true; |
| 122 |
} // Check_dist_and_k
|
| 123 |
|
| 124 |
template <class RealType, class Policy> |
| 125 |
inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol) |
| 126 |
{
|
| 127 |
if((check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false) |
| 128 |
{
|
| 129 |
return false; |
| 130 |
} |
| 131 |
return true; |
| 132 |
} // check_dist_and_prob
|
| 133 |
} // namespace negative_binomial_detail
|
| 134 |
|
| 135 |
template <class RealType = double, class Policy = policies::policy<> > |
| 136 |
class negative_binomial_distribution |
| 137 |
{
|
| 138 |
public:
|
| 139 |
typedef RealType value_type;
|
| 140 |
typedef Policy policy_type;
|
| 141 |
|
| 142 |
negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p) |
| 143 |
{ // Constructor.
|
| 144 |
RealType result; |
| 145 |
negative_binomial_detail::check_dist( |
| 146 |
"negative_binomial_distribution<%1%>::negative_binomial_distribution",
|
| 147 |
m_r, // Check successes r > 0.
|
| 148 |
m_p, // Check success_fraction 0 <= p <= 1.
|
| 149 |
&result, Policy()); |
| 150 |
} // negative_binomial_distribution constructor.
|
| 151 |
|
| 152 |
// Private data getter class member functions.
|
| 153 |
RealType success_fraction() const
|
| 154 |
{ // Probability of success as fraction in range 0 to 1.
|
| 155 |
return m_p;
|
| 156 |
} |
| 157 |
RealType successes() const
|
| 158 |
{ // Total number of successes r.
|
| 159 |
return m_r;
|
| 160 |
} |
| 161 |
|
| 162 |
static RealType find_lower_bound_on_p(
|
| 163 |
RealType trials, |
| 164 |
RealType successes, |
| 165 |
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
|
| 166 |
{
|
| 167 |
static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p"; |
| 168 |
RealType result = 0; // of error checks. |
| 169 |
RealType failures = trials - successes; |
| 170 |
if(false == detail::check_probability(function, alpha, &result, Policy()) |
| 171 |
&& negative_binomial_detail::check_dist_and_k( |
| 172 |
function, successes, RealType(0), failures, &result, Policy()))
|
| 173 |
{
|
| 174 |
return result;
|
| 175 |
} |
| 176 |
// Use complement ibeta_inv function for lower bound.
|
| 177 |
// This is adapted from the corresponding binomial formula
|
| 178 |
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
|
| 179 |
// This is a Clopper-Pearson interval, and may be overly conservative,
|
| 180 |
// see also "A Simple Improved Inferential Method for Some
|
| 181 |
// Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
|
| 182 |
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
|
| 183 |
//
|
| 184 |
return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy()); |
| 185 |
} // find_lower_bound_on_p
|
| 186 |
|
| 187 |
static RealType find_upper_bound_on_p(
|
| 188 |
RealType trials, |
| 189 |
RealType successes, |
| 190 |
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
|
| 191 |
{
|
| 192 |
static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p"; |
| 193 |
RealType result = 0; // of error checks. |
| 194 |
RealType failures = trials - successes; |
| 195 |
if(false == negative_binomial_detail::check_dist_and_k( |
| 196 |
function, successes, RealType(0), failures, &result, Policy())
|
| 197 |
&& detail::check_probability(function, alpha, &result, Policy())) |
| 198 |
{
|
| 199 |
return result;
|
| 200 |
} |
| 201 |
if(failures == 0) |
| 202 |
return 1; |
| 203 |
// Use complement ibetac_inv function for upper bound.
|
| 204 |
// Note adjusted failures value: *not* failures+1 as usual.
|
| 205 |
// This is adapted from the corresponding binomial formula
|
| 206 |
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
|
| 207 |
// This is a Clopper-Pearson interval, and may be overly conservative,
|
| 208 |
// see also "A Simple Improved Inferential Method for Some
|
| 209 |
// Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
|
| 210 |
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
|
| 211 |
//
|
| 212 |
return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy()); |
| 213 |
} // find_upper_bound_on_p
|
| 214 |
|
| 215 |
// Estimate number of trials :
|
| 216 |
// "How many trials do I need to be P% sure of seeing k or fewer failures?"
|
| 217 |
|
| 218 |
static RealType find_minimum_number_of_trials(
|
| 219 |
RealType k, // number of failures (k >= 0).
|
| 220 |
RealType p, // success fraction 0 <= p <= 1.
|
| 221 |
RealType alpha) // risk level threshold 0 <= alpha <= 1.
|
| 222 |
{
|
| 223 |
static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials"; |
| 224 |
// Error checks:
|
| 225 |
RealType result = 0;
|
| 226 |
if(false == negative_binomial_detail::check_dist_and_k( |
| 227 |
function, RealType(1), p, k, &result, Policy())
|
| 228 |
&& detail::check_probability(function, alpha, &result, Policy())) |
| 229 |
{ return result; }
|
| 230 |
|
| 231 |
result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k |
| 232 |
return result + k;
|
| 233 |
} // RealType find_number_of_failures
|
| 234 |
|
| 235 |
static RealType find_maximum_number_of_trials(
|
| 236 |
RealType k, // number of failures (k >= 0).
|
| 237 |
RealType p, // success fraction 0 <= p <= 1.
|
| 238 |
RealType alpha) // risk level threshold 0 <= alpha <= 1.
|
| 239 |
{
|
| 240 |
static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials"; |
| 241 |
// Error checks:
|
| 242 |
RealType result = 0;
|
| 243 |
if(false == negative_binomial_detail::check_dist_and_k( |
| 244 |
function, RealType(1), p, k, &result, Policy())
|
| 245 |
&& detail::check_probability(function, alpha, &result, Policy())) |
| 246 |
{ return result; }
|
| 247 |
|
| 248 |
result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k |
| 249 |
return result + k;
|
| 250 |
} // RealType find_number_of_trials complemented
|
| 251 |
|
| 252 |
private:
|
| 253 |
RealType m_r; // successes.
|
| 254 |
RealType m_p; // success_fraction
|
| 255 |
}; // template <class RealType, class Policy> class negative_binomial_distribution
|
| 256 |
|
| 257 |
typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double. |
| 258 |
|
| 259 |
template <class RealType, class Policy> |
| 260 |
inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */) |
| 261 |
{ // Range of permissible values for random variable k.
|
| 262 |
using boost::math::tools::max_value;
|
| 263 |
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? |
| 264 |
} |
| 265 |
|
| 266 |
template <class RealType, class Policy> |
| 267 |
inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */) |
| 268 |
{ // Range of supported values for random variable k.
|
| 269 |
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
| 270 |
using boost::math::tools::max_value;
|
| 271 |
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? |
| 272 |
} |
| 273 |
|
| 274 |
template <class RealType, class Policy> |
| 275 |
inline RealType mean(const negative_binomial_distribution<RealType, Policy>& dist) |
| 276 |
{ // Mean of Negative Binomial distribution = r(1-p)/p.
|
| 277 |
return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction(); |
| 278 |
} // mean
|
| 279 |
|
| 280 |
//template <class RealType, class Policy>
|
| 281 |
//inline RealType median(const negative_binomial_distribution<RealType, Policy>& dist)
|
| 282 |
//{ // Median of negative_binomial_distribution is not defined.
|
| 283 |
// return policies::raise_domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
|
| 284 |
//} // median
|
| 285 |
// Now implemented via quantile(half) in derived accessors.
|
| 286 |
|
| 287 |
template <class RealType, class Policy> |
| 288 |
inline RealType mode(const negative_binomial_distribution<RealType, Policy>& dist) |
| 289 |
{ // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p]
|
| 290 |
BOOST_MATH_STD_USING // ADL of std functions.
|
| 291 |
return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction()); |
| 292 |
} // mode
|
| 293 |
|
| 294 |
template <class RealType, class Policy> |
| 295 |
inline RealType skewness(const negative_binomial_distribution<RealType, Policy>& dist) |
| 296 |
{ // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p))
|
| 297 |
BOOST_MATH_STD_USING // ADL of std functions.
|
| 298 |
RealType p = dist.success_fraction(); |
| 299 |
RealType r = dist.successes(); |
| 300 |
|
| 301 |
return (2 - p) / |
| 302 |
sqrt(r * (1 - p));
|
| 303 |
} // skewness
|
| 304 |
|
| 305 |
template <class RealType, class Policy> |
| 306 |
inline RealType kurtosis(const negative_binomial_distribution<RealType, Policy>& dist) |
| 307 |
{ // kurtosis of Negative Binomial distribution
|
| 308 |
// http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3
|
| 309 |
RealType p = dist.success_fraction(); |
| 310 |
RealType r = dist.successes(); |
| 311 |
return 3 + (6 / r) + ((p * p) / (r * (1 - p))); |
| 312 |
} // kurtosis
|
| 313 |
|
| 314 |
template <class RealType, class Policy> |
| 315 |
inline RealType kurtosis_excess(const negative_binomial_distribution<RealType, Policy>& dist) |
| 316 |
{ // kurtosis excess of Negative Binomial distribution
|
| 317 |
// http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
|
| 318 |
RealType p = dist.success_fraction(); |
| 319 |
RealType r = dist.successes(); |
| 320 |
return (6 - p * (6-p)) / (r * (1-p)); |
| 321 |
} // kurtosis_excess
|
| 322 |
|
| 323 |
template <class RealType, class Policy> |
| 324 |
inline RealType variance(const negative_binomial_distribution<RealType, Policy>& dist) |
| 325 |
{ // Variance of Binomial distribution = r (1-p) / p^2.
|
| 326 |
return dist.successes() * (1 - dist.success_fraction()) |
| 327 |
/ (dist.success_fraction() * dist.success_fraction()); |
| 328 |
} // variance
|
| 329 |
|
| 330 |
// RealType standard_deviation(const negative_binomial_distribution<RealType, Policy>& dist)
|
| 331 |
// standard_deviation provided by derived accessors.
|
| 332 |
// RealType hazard(const negative_binomial_distribution<RealType, Policy>& dist)
|
| 333 |
// hazard of Negative Binomial distribution provided by derived accessors.
|
| 334 |
// RealType chf(const negative_binomial_distribution<RealType, Policy>& dist)
|
| 335 |
// chf of Negative Binomial distribution provided by derived accessors.
|
| 336 |
|
| 337 |
template <class RealType, class Policy> |
| 338 |
inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k) |
| 339 |
{ // Probability Density/Mass Function.
|
| 340 |
BOOST_FPU_EXCEPTION_GUARD |
| 341 |
|
| 342 |
static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)"; |
| 343 |
|
| 344 |
RealType r = dist.successes(); |
| 345 |
RealType p = dist.success_fraction(); |
| 346 |
RealType result = 0;
|
| 347 |
if(false == negative_binomial_detail::check_dist_and_k( |
| 348 |
function, |
| 349 |
r, |
| 350 |
dist.success_fraction(), |
| 351 |
k, |
| 352 |
&result, Policy())) |
| 353 |
{
|
| 354 |
return result;
|
| 355 |
} |
| 356 |
|
| 357 |
result = (p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p, Policy()); |
| 358 |
// Equivalent to:
|
| 359 |
// return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k);
|
| 360 |
return result;
|
| 361 |
} // negative_binomial_pdf
|
| 362 |
|
| 363 |
template <class RealType, class Policy> |
| 364 |
inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k) |
| 365 |
{ // Cumulative Distribution Function of Negative Binomial.
|
| 366 |
static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; |
| 367 |
using boost::math::ibeta; // Regularized incomplete beta function. |
| 368 |
// k argument may be integral, signed, or unsigned, or floating point.
|
| 369 |
// If necessary, it has already been promoted from an integral type.
|
| 370 |
RealType p = dist.success_fraction(); |
| 371 |
RealType r = dist.successes(); |
| 372 |
// Error check:
|
| 373 |
RealType result = 0;
|
| 374 |
if(false == negative_binomial_detail::check_dist_and_k( |
| 375 |
function, |
| 376 |
r, |
| 377 |
dist.success_fraction(), |
| 378 |
k, |
| 379 |
&result, Policy())) |
| 380 |
{
|
| 381 |
return result;
|
| 382 |
} |
| 383 |
|
| 384 |
RealType probability = ibeta(r, static_cast<RealType>(k+1), p, Policy()); |
| 385 |
// Ip(r, k+1) = ibeta(r, k+1, p)
|
| 386 |
return probability;
|
| 387 |
} // cdf Cumulative Distribution Function Negative Binomial.
|
| 388 |
|
| 389 |
template <class RealType, class Policy> |
| 390 |
inline RealType cdf(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c) |
| 391 |
{ // Complemented Cumulative Distribution Function Negative Binomial.
|
| 392 |
|
| 393 |
static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; |
| 394 |
using boost::math::ibetac; // Regularized incomplete beta function complement. |
| 395 |
// k argument may be integral, signed, or unsigned, or floating point.
|
| 396 |
// If necessary, it has already been promoted from an integral type.
|
| 397 |
RealType const& k = c.param;
|
| 398 |
negative_binomial_distribution<RealType, Policy> const& dist = c.dist;
|
| 399 |
RealType p = dist.success_fraction(); |
| 400 |
RealType r = dist.successes(); |
| 401 |
// Error check:
|
| 402 |
RealType result = 0;
|
| 403 |
if(false == negative_binomial_detail::check_dist_and_k( |
| 404 |
function, |
| 405 |
r, |
| 406 |
p, |
| 407 |
k, |
| 408 |
&result, Policy())) |
| 409 |
{
|
| 410 |
return result;
|
| 411 |
} |
| 412 |
// Calculate cdf negative binomial using the incomplete beta function.
|
| 413 |
// Use of ibeta here prevents cancellation errors in calculating
|
| 414 |
// 1-p if p is very small, perhaps smaller than machine epsilon.
|
| 415 |
// Ip(k+1, r) = ibetac(r, k+1, p)
|
| 416 |
// constrain_probability here?
|
| 417 |
RealType probability = ibetac(r, static_cast<RealType>(k+1), p, Policy()); |
| 418 |
// Numerical errors might cause probability to be slightly outside the range < 0 or > 1.
|
| 419 |
// This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits.
|
| 420 |
return probability;
|
| 421 |
} // cdf Cumulative Distribution Function Negative Binomial.
|
| 422 |
|
| 423 |
template <class RealType, class Policy> |
| 424 |
inline RealType quantile(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& P) |
| 425 |
{ // Quantile, percentile/100 or Percent Point Negative Binomial function.
|
| 426 |
// Return the number of expected failures k for a given probability p.
|
| 427 |
|
| 428 |
// Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability.
|
| 429 |
// MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability.
|
| 430 |
// k argument may be integral, signed, or unsigned, or floating point.
|
| 431 |
// BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y
|
| 432 |
static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; |
| 433 |
BOOST_MATH_STD_USING // ADL of std functions.
|
| 434 |
|
| 435 |
RealType p = dist.success_fraction(); |
| 436 |
RealType r = dist.successes(); |
| 437 |
// Check dist and P.
|
| 438 |
RealType result = 0;
|
| 439 |
if(false == negative_binomial_detail::check_dist_and_prob |
| 440 |
(function, r, p, P, &result, Policy())) |
| 441 |
{
|
| 442 |
return result;
|
| 443 |
} |
| 444 |
|
| 445 |
// Special cases.
|
| 446 |
if (P == 1) |
| 447 |
{ // Would need +infinity failures for total confidence.
|
| 448 |
result = policies::raise_overflow_error<RealType>( |
| 449 |
function, |
| 450 |
"Probability argument is 1, which implies infinite failures !", Policy());
|
| 451 |
return result;
|
| 452 |
// usually means return +std::numeric_limits<RealType>::infinity();
|
| 453 |
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
|
| 454 |
} |
| 455 |
if (P == 0) |
| 456 |
{ // No failures are expected if P = 0.
|
| 457 |
return 0; // Total trials will be just dist.successes. |
| 458 |
} |
| 459 |
if (P <= pow(dist.success_fraction(), dist.successes()))
|
| 460 |
{ // p <= pdf(dist, 0) == cdf(dist, 0)
|
| 461 |
return 0; |
| 462 |
} |
| 463 |
if(p == 0) |
| 464 |
{ // Would need +infinity failures for total confidence.
|
| 465 |
result = policies::raise_overflow_error<RealType>( |
| 466 |
function, |
| 467 |
"Success fraction is 0, which implies infinite failures !", Policy());
|
| 468 |
return result;
|
| 469 |
// usually means return +std::numeric_limits<RealType>::infinity();
|
| 470 |
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
|
| 471 |
} |
| 472 |
/*
|
| 473 |
// Calculate quantile of negative_binomial using the inverse incomplete beta function.
|
| 474 |
using boost::math::ibeta_invb;
|
| 475 |
return ibeta_invb(r, p, P, Policy()) - 1; //
|
| 476 |
*/
|
| 477 |
RealType guess = 0;
|
| 478 |
RealType factor = 5;
|
| 479 |
if(r * r * r * P * p > 0.005) |
| 480 |
guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy()); |
| 481 |
|
| 482 |
if(guess < 10) |
| 483 |
{
|
| 484 |
//
|
| 485 |
// Cornish-Fisher Negative binomial approximation not accurate in this area:
|
| 486 |
//
|
| 487 |
guess = (std::min)(RealType(r * 2), RealType(10)); |
| 488 |
} |
| 489 |
else
|
| 490 |
factor = (1-P < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f); |
| 491 |
BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
|
| 492 |
//
|
| 493 |
// Max iterations permitted:
|
| 494 |
//
|
| 495 |
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 496 |
typedef typename Policy::discrete_quantile_type discrete_type; |
| 497 |
return detail::inverse_discrete_quantile(
|
| 498 |
dist, |
| 499 |
P, |
| 500 |
false,
|
| 501 |
guess, |
| 502 |
factor, |
| 503 |
RealType(1),
|
| 504 |
discrete_type(), |
| 505 |
max_iter); |
| 506 |
} // RealType quantile(const negative_binomial_distribution dist, p)
|
| 507 |
|
| 508 |
template <class RealType, class Policy> |
| 509 |
inline RealType quantile(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c) |
| 510 |
{ // Quantile or Percent Point Binomial function.
|
| 511 |
// Return the number of expected failures k for a given
|
| 512 |
// complement of the probability Q = 1 - P.
|
| 513 |
static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; |
| 514 |
BOOST_MATH_STD_USING |
| 515 |
|
| 516 |
// Error checks:
|
| 517 |
RealType Q = c.param; |
| 518 |
const negative_binomial_distribution<RealType, Policy>& dist = c.dist;
|
| 519 |
RealType p = dist.success_fraction(); |
| 520 |
RealType r = dist.successes(); |
| 521 |
RealType result = 0;
|
| 522 |
if(false == negative_binomial_detail::check_dist_and_prob( |
| 523 |
function, |
| 524 |
r, |
| 525 |
p, |
| 526 |
Q, |
| 527 |
&result, Policy())) |
| 528 |
{
|
| 529 |
return result;
|
| 530 |
} |
| 531 |
|
| 532 |
// Special cases:
|
| 533 |
//
|
| 534 |
if(Q == 1) |
| 535 |
{ // There may actually be no answer to this question,
|
| 536 |
// since the probability of zero failures may be non-zero,
|
| 537 |
return 0; // but zero is the best we can do: |
| 538 |
} |
| 539 |
if(Q == 0) |
| 540 |
{ // Probability 1 - Q == 1 so infinite failures to achieve certainty.
|
| 541 |
// Would need +infinity failures for total confidence.
|
| 542 |
result = policies::raise_overflow_error<RealType>( |
| 543 |
function, |
| 544 |
"Probability argument complement is 0, which implies infinite failures !", Policy());
|
| 545 |
return result;
|
| 546 |
// usually means return +std::numeric_limits<RealType>::infinity();
|
| 547 |
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
|
| 548 |
} |
| 549 |
if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
|
| 550 |
{ // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
|
| 551 |
return 0; // |
| 552 |
} |
| 553 |
if(p == 0) |
| 554 |
{ // Success fraction is 0 so infinite failures to achieve certainty.
|
| 555 |
// Would need +infinity failures for total confidence.
|
| 556 |
result = policies::raise_overflow_error<RealType>( |
| 557 |
function, |
| 558 |
"Success fraction is 0, which implies infinite failures !", Policy());
|
| 559 |
return result;
|
| 560 |
// usually means return +std::numeric_limits<RealType>::infinity();
|
| 561 |
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
|
| 562 |
} |
| 563 |
//return ibetac_invb(r, p, Q, Policy()) -1;
|
| 564 |
RealType guess = 0;
|
| 565 |
RealType factor = 5;
|
| 566 |
if(r * r * r * (1-Q) * p > 0.005) |
| 567 |
guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy()); |
| 568 |
|
| 569 |
if(guess < 10) |
| 570 |
{
|
| 571 |
//
|
| 572 |
// Cornish-Fisher Negative binomial approximation not accurate in this area:
|
| 573 |
//
|
| 574 |
guess = (std::min)(RealType(r * 2), RealType(10)); |
| 575 |
} |
| 576 |
else
|
| 577 |
factor = (Q < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f); |
| 578 |
BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
|
| 579 |
//
|
| 580 |
// Max iterations permitted:
|
| 581 |
//
|
| 582 |
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 583 |
typedef typename Policy::discrete_quantile_type discrete_type; |
| 584 |
return detail::inverse_discrete_quantile(
|
| 585 |
dist, |
| 586 |
Q, |
| 587 |
true,
|
| 588 |
guess, |
| 589 |
factor, |
| 590 |
RealType(1),
|
| 591 |
discrete_type(), |
| 592 |
max_iter); |
| 593 |
} // quantile complement
|
| 594 |
|
| 595 |
} // namespace math
|
| 596 |
} // namespace boost
|
| 597 |
|
| 598 |
// This include must be at the end, *after* the accessors
|
| 599 |
// for this distribution have been defined, in order to
|
| 600 |
// keep compilers that support two-phase lookup happy.
|
| 601 |
#include <boost/math/distributions/detail/derived_accessors.hpp> |
| 602 |
|
| 603 |
#if defined (BOOST_MSVC)
|
| 604 |
# pragma warning(pop)
|
| 605 |
#endif
|
| 606 |
|
| 607 |
#endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP |