To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.

Statistics Download as Zip
| Branch: | Tag: | Revision:

root / any / include / boost / math / distributions / negative_binomial.hpp @ 160:cff480c41f97

History | View | Annotate | Download (26.1 KB)

1
// boost\math\special_functions\negative_binomial.hpp
2

    
3
// Copyright Paul A. Bristow 2007.
4
// Copyright John Maddock 2007.
5

    
6
// Use, modification and distribution are subject to the
7
// Boost Software License, Version 1.0.
8
// (See accompanying file LICENSE_1_0.txt
9
// or copy at http://www.boost.org/LICENSE_1_0.txt)
10

    
11
// http://en.wikipedia.org/wiki/negative_binomial_distribution
12
// http://mathworld.wolfram.com/NegativeBinomialDistribution.html
13
// http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html
14

    
15
// The negative binomial distribution NegativeBinomialDistribution[n, p]
16
// is the distribution of the number (k) of failures that occur in a sequence of trials before
17
// r successes have occurred, where the probability of success in each trial is p.
18

    
19
// In a sequence of Bernoulli trials or events
20
// (independent, yes or no, succeed or fail) with success_fraction probability p,
21
// negative_binomial is the probability that k or fewer failures
22
// preceed the r th trial's success.
23
// random variable k is the number of failures (NOT the probability).
24

    
25
// Negative_binomial distribution is a discrete probability distribution.
26
// But note that the negative binomial distribution
27
// (like others including the binomial, Poisson & Bernoulli)
28
// is strictly defined as a discrete function: only integral values of k are envisaged.
29
// However because of the method of calculation using a continuous gamma function,
30
// it is convenient to treat it as if a continous function,
31
// and permit non-integral values of k.
32

    
33
// However, by default the policy is to use discrete_quantile_policy.
34

    
35
// To enforce the strict mathematical model, users should use conversion
36
// on k outside this function to ensure that k is integral.
37

    
38
// MATHCAD cumulative negative binomial pnbinom(k, n, p)
39

    
40
// Implementation note: much greater speed, and perhaps greater accuracy,
41
// might be achieved for extreme values by using a normal approximation.
42
// This is NOT been tested or implemented.
43

    
44
#ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
45
#define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
46

    
47
#include <boost/math/distributions/fwd.hpp>
48
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
49
#include <boost/math/distributions/complement.hpp> // complement.
50
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
51
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
52
#include <boost/math/tools/roots.hpp> // for root finding.
53
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
54

    
55
#include <boost/type_traits/is_floating_point.hpp>
56
#include <boost/type_traits/is_integral.hpp>
57
#include <boost/type_traits/is_same.hpp>
58
#include <boost/mpl/if.hpp>
59

    
60
#include <limits> // using std::numeric_limits;
61
#include <utility>
62

    
63
#if defined (BOOST_MSVC)
64
#  pragma warning(push)
65
// This believed not now necessary, so commented out.
66
//#  pragma warning(disable: 4702) // unreachable code.
67
// in domain_error_imp in error_handling.
68
#endif
69

    
70
namespace boost
71
{
72
  namespace math
73
  {
74
    namespace negative_binomial_detail
75
    {
76
      // Common error checking routines for negative binomial distribution functions:
77
      template <class RealType, class Policy>
78
      inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol)
79
      {
80
        if( !(boost::math::isfinite)(r) || (r <= 0) )
81
        {
82
          *result = policies::raise_domain_error<RealType>(
83
            function,
84
            "Number of successes argument is %1%, but must be > 0 !", r, pol);
85
          return false;
86
        }
87
        return true;
88
      }
89
      template <class RealType, class Policy>
90
      inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
91
      {
92
        if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
93
        {
94
          *result = policies::raise_domain_error<RealType>(
95
            function,
96
            "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
97
          return false;
98
        }
99
        return true;
100
      }
101
      template <class RealType, class Policy>
102
      inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol)
103
      {
104
        return check_success_fraction(function, p, result, pol)
105
          && check_successes(function, r, result, pol);
106
      }
107
      template <class RealType, class Policy>
108
      inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol)
109
      {
110
        if(check_dist(function, r, p, result, pol) == false)
111
        {
112
          return false;
113
        }
114
        if( !(boost::math::isfinite)(k) || (k < 0) )
115
        { // Check k failures.
116
          *result = policies::raise_domain_error<RealType>(
117
            function,
118
            "Number of failures argument is %1%, but must be >= 0 !", k, pol);
119
          return false;
120
        }
121
        return true;
122
      } // Check_dist_and_k
123

    
124
      template <class RealType, class Policy>
125
      inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol)
126
      {
127
        if((check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
128
        {
129
          return false;
130
        }
131
        return true;
132
      } // check_dist_and_prob
133
    } //  namespace negative_binomial_detail
134

    
135
    template <class RealType = double, class Policy = policies::policy<> >
136
    class negative_binomial_distribution
137
    {
138
    public:
139
      typedef RealType value_type;
140
      typedef Policy policy_type;
141

    
142
      negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p)
143
      { // Constructor.
144
        RealType result;
145
        negative_binomial_detail::check_dist(
146
          "negative_binomial_distribution<%1%>::negative_binomial_distribution",
147
          m_r, // Check successes r > 0.
148
          m_p, // Check success_fraction 0 <= p <= 1.
149
          &result, Policy());
150
      } // negative_binomial_distribution constructor.
151

    
152
      // Private data getter class member functions.
153
      RealType success_fraction() const
154
      { // Probability of success as fraction in range 0 to 1.
155
        return m_p;
156
      }
157
      RealType successes() const
158
      { // Total number of successes r.
159
        return m_r;
160
      }
161

    
162
      static RealType find_lower_bound_on_p(
163
        RealType trials,
164
        RealType successes,
165
        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
166
      {
167
        static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p";
168
        RealType result = 0;  // of error checks.
169
        RealType failures = trials - successes;
170
        if(false == detail::check_probability(function, alpha, &result, Policy())
171
          && negative_binomial_detail::check_dist_and_k(
172
          function, successes, RealType(0), failures, &result, Policy()))
173
        {
174
          return result;
175
        }
176
        // Use complement ibeta_inv function for lower bound.
177
        // This is adapted from the corresponding binomial formula
178
        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
179
        // This is a Clopper-Pearson interval, and may be overly conservative,
180
        // see also "A Simple Improved Inferential Method for Some
181
        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
182
        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
183
        //
184
        return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
185
      } // find_lower_bound_on_p
186

    
187
      static RealType find_upper_bound_on_p(
188
        RealType trials,
189
        RealType successes,
190
        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
191
      {
192
        static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p";
193
        RealType result = 0;  // of error checks.
194
        RealType failures = trials - successes;
195
        if(false == negative_binomial_detail::check_dist_and_k(
196
          function, successes, RealType(0), failures, &result, Policy())
197
          && detail::check_probability(function, alpha, &result, Policy()))
198
        {
199
          return result;
200
        }
201
        if(failures == 0)
202
           return 1;
203
        // Use complement ibetac_inv function for upper bound.
204
        // Note adjusted failures value: *not* failures+1 as usual.
205
        // This is adapted from the corresponding binomial formula
206
        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
207
        // This is a Clopper-Pearson interval, and may be overly conservative,
208
        // see also "A Simple Improved Inferential Method for Some
209
        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
210
        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
211
        //
212
        return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
213
      } // find_upper_bound_on_p
214

    
215
      // Estimate number of trials :
216
      // "How many trials do I need to be P% sure of seeing k or fewer failures?"
217

    
218
      static RealType find_minimum_number_of_trials(
219
        RealType k,     // number of failures (k >= 0).
220
        RealType p,     // success fraction 0 <= p <= 1.
221
        RealType alpha) // risk level threshold 0 <= alpha <= 1.
222
      {
223
        static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials";
224
        // Error checks:
225
        RealType result = 0;
226
        if(false == negative_binomial_detail::check_dist_and_k(
227
          function, RealType(1), p, k, &result, Policy())
228
          && detail::check_probability(function, alpha, &result, Policy()))
229
        { return result; }
230

    
231
        result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k
232
        return result + k;
233
      } // RealType find_number_of_failures
234

    
235
      static RealType find_maximum_number_of_trials(
236
        RealType k,     // number of failures (k >= 0).
237
        RealType p,     // success fraction 0 <= p <= 1.
238
        RealType alpha) // risk level threshold 0 <= alpha <= 1.
239
      {
240
        static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials";
241
        // Error checks:
242
        RealType result = 0;
243
        if(false == negative_binomial_detail::check_dist_and_k(
244
          function, RealType(1), p, k, &result, Policy())
245
          &&  detail::check_probability(function, alpha, &result, Policy()))
246
        { return result; }
247

    
248
        result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k
249
        return result + k;
250
      } // RealType find_number_of_trials complemented
251

    
252
    private:
253
      RealType m_r; // successes.
254
      RealType m_p; // success_fraction
255
    }; // template <class RealType, class Policy> class negative_binomial_distribution
256

    
257
    typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
258

    
259
    template <class RealType, class Policy>
260
    inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */)
261
    { // Range of permissible values for random variable k.
262
       using boost::math::tools::max_value;
263
       return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
264
    }
265

    
266
    template <class RealType, class Policy>
267
    inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */)
268
    { // Range of supported values for random variable k.
269
       // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
270
       using boost::math::tools::max_value;
271
       return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer?
272
    }
273

    
274
    template <class RealType, class Policy>
275
    inline RealType mean(const negative_binomial_distribution<RealType, Policy>& dist)
276
    { // Mean of Negative Binomial distribution = r(1-p)/p.
277
      return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction();
278
    } // mean
279

    
280
    //template <class RealType, class Policy>
281
    //inline RealType median(const negative_binomial_distribution<RealType, Policy>& dist)
282
    //{ // Median of negative_binomial_distribution is not defined.
283
    //  return policies::raise_domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
284
    //} // median
285
    // Now implemented via quantile(half) in derived accessors.
286

    
287
    template <class RealType, class Policy>
288
    inline RealType mode(const negative_binomial_distribution<RealType, Policy>& dist)
289
    { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p]
290
      BOOST_MATH_STD_USING // ADL of std functions.
291
      return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction());
292
    } // mode
293

    
294
    template <class RealType, class Policy>
295
    inline RealType skewness(const negative_binomial_distribution<RealType, Policy>& dist)
296
    { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p))
297
      BOOST_MATH_STD_USING // ADL of std functions.
298
      RealType p = dist.success_fraction();
299
      RealType r = dist.successes();
300

    
301
      return (2 - p) /
302
        sqrt(r * (1 - p));
303
    } // skewness
304

    
305
    template <class RealType, class Policy>
306
    inline RealType kurtosis(const negative_binomial_distribution<RealType, Policy>& dist)
307
    { // kurtosis of Negative Binomial distribution
308
      // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3
309
      RealType p = dist.success_fraction();
310
      RealType r = dist.successes();
311
      return 3 + (6 / r) + ((p * p) / (r * (1 - p)));
312
    } // kurtosis
313

    
314
     template <class RealType, class Policy>
315
    inline RealType kurtosis_excess(const negative_binomial_distribution<RealType, Policy>& dist)
316
    { // kurtosis excess of Negative Binomial distribution
317
      // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
318
      RealType p = dist.success_fraction();
319
      RealType r = dist.successes();
320
      return (6 - p * (6-p)) / (r * (1-p));
321
    } // kurtosis_excess
322

    
323
    template <class RealType, class Policy>
324
    inline RealType variance(const negative_binomial_distribution<RealType, Policy>& dist)
325
    { // Variance of Binomial distribution = r (1-p) / p^2.
326
      return  dist.successes() * (1 - dist.success_fraction())
327
        / (dist.success_fraction() * dist.success_fraction());
328
    } // variance
329

    
330
    // RealType standard_deviation(const negative_binomial_distribution<RealType, Policy>& dist)
331
    // standard_deviation provided by derived accessors.
332
    // RealType hazard(const negative_binomial_distribution<RealType, Policy>& dist)
333
    // hazard of Negative Binomial distribution provided by derived accessors.
334
    // RealType chf(const negative_binomial_distribution<RealType, Policy>& dist)
335
    // chf of Negative Binomial distribution provided by derived accessors.
336

    
337
    template <class RealType, class Policy>
338
    inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
339
    { // Probability Density/Mass Function.
340
      BOOST_FPU_EXCEPTION_GUARD
341

    
342
      static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)";
343

    
344
      RealType r = dist.successes();
345
      RealType p = dist.success_fraction();
346
      RealType result = 0;
347
      if(false == negative_binomial_detail::check_dist_and_k(
348
        function,
349
        r,
350
        dist.success_fraction(),
351
        k,
352
        &result, Policy()))
353
      {
354
        return result;
355
      }
356

    
357
      result = (p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p, Policy());
358
      // Equivalent to:
359
      // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k);
360
      return result;
361
    } // negative_binomial_pdf
362

    
363
    template <class RealType, class Policy>
364
    inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
365
    { // Cumulative Distribution Function of Negative Binomial.
366
      static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
367
      using boost::math::ibeta; // Regularized incomplete beta function.
368
      // k argument may be integral, signed, or unsigned, or floating point.
369
      // If necessary, it has already been promoted from an integral type.
370
      RealType p = dist.success_fraction();
371
      RealType r = dist.successes();
372
      // Error check:
373
      RealType result = 0;
374
      if(false == negative_binomial_detail::check_dist_and_k(
375
        function,
376
        r,
377
        dist.success_fraction(),
378
        k,
379
        &result, Policy()))
380
      {
381
        return result;
382
      }
383

    
384
      RealType probability = ibeta(r, static_cast<RealType>(k+1), p, Policy());
385
      // Ip(r, k+1) = ibeta(r, k+1, p)
386
      return probability;
387
    } // cdf Cumulative Distribution Function Negative Binomial.
388

    
389
      template <class RealType, class Policy>
390
      inline RealType cdf(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
391
      { // Complemented Cumulative Distribution Function Negative Binomial.
392

    
393
      static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
394
      using boost::math::ibetac; // Regularized incomplete beta function complement.
395
      // k argument may be integral, signed, or unsigned, or floating point.
396
      // If necessary, it has already been promoted from an integral type.
397
      RealType const& k = c.param;
398
      negative_binomial_distribution<RealType, Policy> const& dist = c.dist;
399
      RealType p = dist.success_fraction();
400
      RealType r = dist.successes();
401
      // Error check:
402
      RealType result = 0;
403
      if(false == negative_binomial_detail::check_dist_and_k(
404
        function,
405
        r,
406
        p,
407
        k,
408
        &result, Policy()))
409
      {
410
        return result;
411
      }
412
      // Calculate cdf negative binomial using the incomplete beta function.
413
      // Use of ibeta here prevents cancellation errors in calculating
414
      // 1-p if p is very small, perhaps smaller than machine epsilon.
415
      // Ip(k+1, r) = ibetac(r, k+1, p)
416
      // constrain_probability here?
417
     RealType probability = ibetac(r, static_cast<RealType>(k+1), p, Policy());
418
      // Numerical errors might cause probability to be slightly outside the range < 0 or > 1.
419
      // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits.
420
      return probability;
421
    } // cdf Cumulative Distribution Function Negative Binomial.
422

    
423
    template <class RealType, class Policy>
424
    inline RealType quantile(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& P)
425
    { // Quantile, percentile/100 or Percent Point Negative Binomial function.
426
      // Return the number of expected failures k for a given probability p.
427

    
428
      // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability.
429
      // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability.
430
      // k argument may be integral, signed, or unsigned, or floating point.
431
      // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y
432
      static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
433
      BOOST_MATH_STD_USING // ADL of std functions.
434

    
435
      RealType p = dist.success_fraction();
436
      RealType r = dist.successes();
437
      // Check dist and P.
438
      RealType result = 0;
439
      if(false == negative_binomial_detail::check_dist_and_prob
440
        (function, r, p, P, &result, Policy()))
441
      {
442
        return result;
443
      }
444

    
445
      // Special cases.
446
      if (P == 1)
447
      {  // Would need +infinity failures for total confidence.
448
        result = policies::raise_overflow_error<RealType>(
449
            function,
450
            "Probability argument is 1, which implies infinite failures !", Policy());
451
        return result;
452
       // usually means return +std::numeric_limits<RealType>::infinity();
453
       // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
454
      }
455
      if (P == 0)
456
      { // No failures are expected if P = 0.
457
        return 0; // Total trials will be just dist.successes.
458
      }
459
      if (P <= pow(dist.success_fraction(), dist.successes()))
460
      { // p <= pdf(dist, 0) == cdf(dist, 0)
461
        return 0;
462
      }
463
      if(p == 0)
464
      {  // Would need +infinity failures for total confidence.
465
         result = policies::raise_overflow_error<RealType>(
466
            function,
467
            "Success fraction is 0, which implies infinite failures !", Policy());
468
         return result;
469
         // usually means return +std::numeric_limits<RealType>::infinity();
470
         // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
471
      }
472
      /*
473
      // Calculate quantile of negative_binomial using the inverse incomplete beta function.
474
      using boost::math::ibeta_invb;
475
      return ibeta_invb(r, p, P, Policy()) - 1; //
476
      */
477
      RealType guess = 0;
478
      RealType factor = 5;
479
      if(r * r * r * P * p > 0.005)
480
         guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy());
481

    
482
      if(guess < 10)
483
      {
484
         //
485
         // Cornish-Fisher Negative binomial approximation not accurate in this area:
486
         //
487
         guess = (std::min)(RealType(r * 2), RealType(10));
488
      }
489
      else
490
         factor = (1-P < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
491
      BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
492
      //
493
      // Max iterations permitted:
494
      //
495
      boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
496
      typedef typename Policy::discrete_quantile_type discrete_type;
497
      return detail::inverse_discrete_quantile(
498
         dist,
499
         P,
500
         false,
501
         guess,
502
         factor,
503
         RealType(1),
504
         discrete_type(),
505
         max_iter);
506
    } // RealType quantile(const negative_binomial_distribution dist, p)
507

    
508
    template <class RealType, class Policy>
509
    inline RealType quantile(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
510
    {  // Quantile or Percent Point Binomial function.
511
       // Return the number of expected failures k for a given
512
       // complement of the probability Q = 1 - P.
513
       static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
514
       BOOST_MATH_STD_USING
515

    
516
       // Error checks:
517
       RealType Q = c.param;
518
       const negative_binomial_distribution<RealType, Policy>& dist = c.dist;
519
       RealType p = dist.success_fraction();
520
       RealType r = dist.successes();
521
       RealType result = 0;
522
       if(false == negative_binomial_detail::check_dist_and_prob(
523
          function,
524
          r,
525
          p,
526
          Q,
527
          &result, Policy()))
528
       {
529
          return result;
530
       }
531

    
532
       // Special cases:
533
       //
534
       if(Q == 1)
535
       {  // There may actually be no answer to this question,
536
          // since the probability of zero failures may be non-zero,
537
          return 0; // but zero is the best we can do:
538
       }
539
       if(Q == 0)
540
       {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty.
541
          // Would need +infinity failures for total confidence.
542
          result = policies::raise_overflow_error<RealType>(
543
             function,
544
             "Probability argument complement is 0, which implies infinite failures !", Policy());
545
          return result;
546
          // usually means return +std::numeric_limits<RealType>::infinity();
547
          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
548
       }
549
       if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
550
       {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
551
          return 0; //
552
       }
553
       if(p == 0)
554
       {  // Success fraction is 0 so infinite failures to achieve certainty.
555
          // Would need +infinity failures for total confidence.
556
          result = policies::raise_overflow_error<RealType>(
557
             function,
558
             "Success fraction is 0, which implies infinite failures !", Policy());
559
          return result;
560
          // usually means return +std::numeric_limits<RealType>::infinity();
561
          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
562
       }
563
       //return ibetac_invb(r, p, Q, Policy()) -1;
564
       RealType guess = 0;
565
       RealType factor = 5;
566
       if(r * r * r * (1-Q) * p > 0.005)
567
          guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy());
568

    
569
       if(guess < 10)
570
       {
571
          //
572
          // Cornish-Fisher Negative binomial approximation not accurate in this area:
573
          //
574
          guess = (std::min)(RealType(r * 2), RealType(10));
575
       }
576
       else
577
          factor = (Q < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
578
       BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
579
       //
580
       // Max iterations permitted:
581
       //
582
       boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
583
       typedef typename Policy::discrete_quantile_type discrete_type;
584
       return detail::inverse_discrete_quantile(
585
          dist,
586
          Q,
587
          true,
588
          guess,
589
          factor,
590
          RealType(1),
591
          discrete_type(),
592
          max_iter);
593
    } // quantile complement
594

    
595
 } // namespace math
596
} // namespace boost
597

    
598
// This include must be at the end, *after* the accessors
599
// for this distribution have been defined, in order to
600
// keep compilers that support two-phase lookup happy.
601
#include <boost/math/distributions/detail/derived_accessors.hpp>
602

    
603
#if defined (BOOST_MSVC)
604
# pragma warning(pop)
605
#endif
606

    
607
#endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP