To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / any / include / boost / math / distributions / geometric.hpp @ 160:cff480c41f97
History | View | Annotate | Download (21.2 KB)
| 1 |
// boost\math\distributions\geometric.hpp
|
|---|---|
| 2 |
|
| 3 |
// Copyright John Maddock 2010.
|
| 4 |
// Copyright Paul A. Bristow 2010.
|
| 5 |
|
| 6 |
// Use, modification and distribution are subject to the
|
| 7 |
// Boost Software License, Version 1.0.
|
| 8 |
// (See accompanying file LICENSE_1_0.txt
|
| 9 |
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
| 10 |
|
| 11 |
// geometric distribution is a discrete probability distribution.
|
| 12 |
// It expresses the probability distribution of the number (k) of
|
| 13 |
// events, occurrences, failures or arrivals before the first success.
|
| 14 |
// supported on the set {0, 1, 2, 3...}
|
| 15 |
|
| 16 |
// Note that the set includes zero (unlike some definitions that start at one).
|
| 17 |
|
| 18 |
// The random variate k is the number of events, occurrences or arrivals.
|
| 19 |
// k argument may be integral, signed, or unsigned, or floating point.
|
| 20 |
// If necessary, it has already been promoted from an integral type.
|
| 21 |
|
| 22 |
// Note that the geometric distribution
|
| 23 |
// (like others including the binomial, geometric & Bernoulli)
|
| 24 |
// is strictly defined as a discrete function:
|
| 25 |
// only integral values of k are envisaged.
|
| 26 |
// However because the method of calculation uses a continuous gamma function,
|
| 27 |
// it is convenient to treat it as if a continous function,
|
| 28 |
// and permit non-integral values of k.
|
| 29 |
// To enforce the strict mathematical model, users should use floor or ceil functions
|
| 30 |
// on k outside this function to ensure that k is integral.
|
| 31 |
|
| 32 |
// See http://en.wikipedia.org/wiki/geometric_distribution
|
| 33 |
// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
|
| 34 |
// http://mathworld.wolfram.com/GeometricDistribution.html
|
| 35 |
|
| 36 |
#ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP
|
| 37 |
#define BOOST_MATH_SPECIAL_GEOMETRIC_HPP
|
| 38 |
|
| 39 |
#include <boost/math/distributions/fwd.hpp> |
| 40 |
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b). |
| 41 |
#include <boost/math/distributions/complement.hpp> // complement. |
| 42 |
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error. |
| 43 |
#include <boost/math/special_functions/fpclassify.hpp> // isnan. |
| 44 |
#include <boost/math/tools/roots.hpp> // for root finding. |
| 45 |
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> |
| 46 |
|
| 47 |
#include <boost/type_traits/is_floating_point.hpp> |
| 48 |
#include <boost/type_traits/is_integral.hpp> |
| 49 |
#include <boost/type_traits/is_same.hpp> |
| 50 |
#include <boost/mpl/if.hpp> |
| 51 |
|
| 52 |
#include <limits> // using std::numeric_limits; |
| 53 |
#include <utility> |
| 54 |
|
| 55 |
#if defined (BOOST_MSVC)
|
| 56 |
# pragma warning(push)
|
| 57 |
// This believed not now necessary, so commented out.
|
| 58 |
//# pragma warning(disable: 4702) // unreachable code.
|
| 59 |
// in domain_error_imp in error_handling.
|
| 60 |
#endif
|
| 61 |
|
| 62 |
namespace boost
|
| 63 |
{
|
| 64 |
namespace math
|
| 65 |
{
|
| 66 |
namespace geometric_detail
|
| 67 |
{
|
| 68 |
// Common error checking routines for geometric distribution function:
|
| 69 |
template <class RealType, class Policy> |
| 70 |
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) |
| 71 |
{
|
| 72 |
if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) |
| 73 |
{
|
| 74 |
*result = policies::raise_domain_error<RealType>( |
| 75 |
function, |
| 76 |
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
|
| 77 |
return false; |
| 78 |
} |
| 79 |
return true; |
| 80 |
} |
| 81 |
|
| 82 |
template <class RealType, class Policy> |
| 83 |
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol) |
| 84 |
{
|
| 85 |
return check_success_fraction(function, p, result, pol);
|
| 86 |
} |
| 87 |
|
| 88 |
template <class RealType, class Policy> |
| 89 |
inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol) |
| 90 |
{
|
| 91 |
if(check_dist(function, p, result, pol) == false) |
| 92 |
{
|
| 93 |
return false; |
| 94 |
} |
| 95 |
if( !(boost::math::isfinite)(k) || (k < 0) ) |
| 96 |
{ // Check k failures.
|
| 97 |
*result = policies::raise_domain_error<RealType>( |
| 98 |
function, |
| 99 |
"Number of failures argument is %1%, but must be >= 0 !", k, pol);
|
| 100 |
return false; |
| 101 |
} |
| 102 |
return true; |
| 103 |
} // Check_dist_and_k
|
| 104 |
|
| 105 |
template <class RealType, class Policy> |
| 106 |
inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol) |
| 107 |
{
|
| 108 |
if((check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false) |
| 109 |
{
|
| 110 |
return false; |
| 111 |
} |
| 112 |
return true; |
| 113 |
} // check_dist_and_prob
|
| 114 |
} // namespace geometric_detail
|
| 115 |
|
| 116 |
template <class RealType = double, class Policy = policies::policy<> > |
| 117 |
class geometric_distribution |
| 118 |
{
|
| 119 |
public:
|
| 120 |
typedef RealType value_type;
|
| 121 |
typedef Policy policy_type;
|
| 122 |
|
| 123 |
geometric_distribution(RealType p) : m_p(p) |
| 124 |
{ // Constructor stores success_fraction p.
|
| 125 |
RealType result; |
| 126 |
geometric_detail::check_dist( |
| 127 |
"geometric_distribution<%1%>::geometric_distribution",
|
| 128 |
m_p, // Check success_fraction 0 <= p <= 1.
|
| 129 |
&result, Policy()); |
| 130 |
} // geometric_distribution constructor.
|
| 131 |
|
| 132 |
// Private data getter class member functions.
|
| 133 |
RealType success_fraction() const
|
| 134 |
{ // Probability of success as fraction in range 0 to 1.
|
| 135 |
return m_p;
|
| 136 |
} |
| 137 |
RealType successes() const
|
| 138 |
{ // Total number of successes r = 1 (for compatibility with negative binomial?).
|
| 139 |
return 1; |
| 140 |
} |
| 141 |
|
| 142 |
// Parameter estimation.
|
| 143 |
// (These are copies of negative_binomial distribution with successes = 1).
|
| 144 |
static RealType find_lower_bound_on_p(
|
| 145 |
RealType trials, |
| 146 |
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
|
| 147 |
{
|
| 148 |
static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p"; |
| 149 |
RealType result = 0; // of error checks. |
| 150 |
RealType successes = 1;
|
| 151 |
RealType failures = trials - successes; |
| 152 |
if(false == detail::check_probability(function, alpha, &result, Policy()) |
| 153 |
&& geometric_detail::check_dist_and_k( |
| 154 |
function, RealType(0), failures, &result, Policy()))
|
| 155 |
{
|
| 156 |
return result;
|
| 157 |
} |
| 158 |
// Use complement ibeta_inv function for lower bound.
|
| 159 |
// This is adapted from the corresponding binomial formula
|
| 160 |
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
|
| 161 |
// This is a Clopper-Pearson interval, and may be overly conservative,
|
| 162 |
// see also "A Simple Improved Inferential Method for Some
|
| 163 |
// Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
|
| 164 |
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
|
| 165 |
//
|
| 166 |
return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy()); |
| 167 |
} // find_lower_bound_on_p
|
| 168 |
|
| 169 |
static RealType find_upper_bound_on_p(
|
| 170 |
RealType trials, |
| 171 |
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
|
| 172 |
{
|
| 173 |
static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p"; |
| 174 |
RealType result = 0; // of error checks. |
| 175 |
RealType successes = 1;
|
| 176 |
RealType failures = trials - successes; |
| 177 |
if(false == geometric_detail::check_dist_and_k( |
| 178 |
function, RealType(0), failures, &result, Policy())
|
| 179 |
&& detail::check_probability(function, alpha, &result, Policy())) |
| 180 |
{
|
| 181 |
return result;
|
| 182 |
} |
| 183 |
if(failures == 0) |
| 184 |
{
|
| 185 |
return 1; |
| 186 |
}// Use complement ibetac_inv function for upper bound.
|
| 187 |
// Note adjusted failures value: *not* failures+1 as usual.
|
| 188 |
// This is adapted from the corresponding binomial formula
|
| 189 |
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
|
| 190 |
// This is a Clopper-Pearson interval, and may be overly conservative,
|
| 191 |
// see also "A Simple Improved Inferential Method for Some
|
| 192 |
// Discrete Distributions" Yong CAI and K. Krishnamoorthy
|
| 193 |
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
|
| 194 |
//
|
| 195 |
return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy()); |
| 196 |
} // find_upper_bound_on_p
|
| 197 |
|
| 198 |
// Estimate number of trials :
|
| 199 |
// "How many trials do I need to be P% sure of seeing k or fewer failures?"
|
| 200 |
|
| 201 |
static RealType find_minimum_number_of_trials(
|
| 202 |
RealType k, // number of failures (k >= 0).
|
| 203 |
RealType p, // success fraction 0 <= p <= 1.
|
| 204 |
RealType alpha) // risk level threshold 0 <= alpha <= 1.
|
| 205 |
{
|
| 206 |
static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials"; |
| 207 |
// Error checks:
|
| 208 |
RealType result = 0;
|
| 209 |
if(false == geometric_detail::check_dist_and_k( |
| 210 |
function, p, k, &result, Policy()) |
| 211 |
&& detail::check_probability(function, alpha, &result, Policy())) |
| 212 |
{
|
| 213 |
return result;
|
| 214 |
} |
| 215 |
result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k |
| 216 |
return result + k;
|
| 217 |
} // RealType find_number_of_failures
|
| 218 |
|
| 219 |
static RealType find_maximum_number_of_trials(
|
| 220 |
RealType k, // number of failures (k >= 0).
|
| 221 |
RealType p, // success fraction 0 <= p <= 1.
|
| 222 |
RealType alpha) // risk level threshold 0 <= alpha <= 1.
|
| 223 |
{
|
| 224 |
static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials"; |
| 225 |
// Error checks:
|
| 226 |
RealType result = 0;
|
| 227 |
if(false == geometric_detail::check_dist_and_k( |
| 228 |
function, p, k, &result, Policy()) |
| 229 |
&& detail::check_probability(function, alpha, &result, Policy())) |
| 230 |
{
|
| 231 |
return result;
|
| 232 |
} |
| 233 |
result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k |
| 234 |
return result + k;
|
| 235 |
} // RealType find_number_of_trials complemented
|
| 236 |
|
| 237 |
private:
|
| 238 |
//RealType m_r; // successes fixed at unity.
|
| 239 |
RealType m_p; // success_fraction
|
| 240 |
}; // template <class RealType, class Policy> class geometric_distribution
|
| 241 |
|
| 242 |
typedef geometric_distribution<double> geometric; // Reserved name of type double. |
| 243 |
|
| 244 |
template <class RealType, class Policy> |
| 245 |
inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */) |
| 246 |
{ // Range of permissible values for random variable k.
|
| 247 |
using boost::math::tools::max_value;
|
| 248 |
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? |
| 249 |
} |
| 250 |
|
| 251 |
template <class RealType, class Policy> |
| 252 |
inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */) |
| 253 |
{ // Range of supported values for random variable k.
|
| 254 |
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
| 255 |
using boost::math::tools::max_value;
|
| 256 |
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? |
| 257 |
} |
| 258 |
|
| 259 |
template <class RealType, class Policy> |
| 260 |
inline RealType mean(const geometric_distribution<RealType, Policy>& dist) |
| 261 |
{ // Mean of geometric distribution = (1-p)/p.
|
| 262 |
return (1 - dist.success_fraction() ) / dist.success_fraction(); |
| 263 |
} // mean
|
| 264 |
|
| 265 |
// median implemented via quantile(half) in derived accessors.
|
| 266 |
|
| 267 |
template <class RealType, class Policy> |
| 268 |
inline RealType mode(const geometric_distribution<RealType, Policy>&) |
| 269 |
{ // Mode of geometric distribution = zero.
|
| 270 |
BOOST_MATH_STD_USING // ADL of std functions.
|
| 271 |
return 0; |
| 272 |
} // mode
|
| 273 |
|
| 274 |
template <class RealType, class Policy> |
| 275 |
inline RealType variance(const geometric_distribution<RealType, Policy>& dist) |
| 276 |
{ // Variance of Binomial distribution = (1-p) / p^2.
|
| 277 |
return (1 - dist.success_fraction()) |
| 278 |
/ (dist.success_fraction() * dist.success_fraction()); |
| 279 |
} // variance
|
| 280 |
|
| 281 |
template <class RealType, class Policy> |
| 282 |
inline RealType skewness(const geometric_distribution<RealType, Policy>& dist) |
| 283 |
{ // skewness of geometric distribution = 2-p / (sqrt(r(1-p))
|
| 284 |
BOOST_MATH_STD_USING // ADL of std functions.
|
| 285 |
RealType p = dist.success_fraction(); |
| 286 |
return (2 - p) / sqrt(1 - p); |
| 287 |
} // skewness
|
| 288 |
|
| 289 |
template <class RealType, class Policy> |
| 290 |
inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist) |
| 291 |
{ // kurtosis of geometric distribution
|
| 292 |
// http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3
|
| 293 |
RealType p = dist.success_fraction(); |
| 294 |
return 3 + (p*p - 6*p + 6) / (1 - p); |
| 295 |
} // kurtosis
|
| 296 |
|
| 297 |
template <class RealType, class Policy> |
| 298 |
inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist) |
| 299 |
{ // kurtosis excess of geometric distribution
|
| 300 |
// http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
|
| 301 |
RealType p = dist.success_fraction(); |
| 302 |
return (p*p - 6*p + 6) / (1 - p); |
| 303 |
} // kurtosis_excess
|
| 304 |
|
| 305 |
// RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist)
|
| 306 |
// standard_deviation provided by derived accessors.
|
| 307 |
// RealType hazard(const geometric_distribution<RealType, Policy>& dist)
|
| 308 |
// hazard of geometric distribution provided by derived accessors.
|
| 309 |
// RealType chf(const geometric_distribution<RealType, Policy>& dist)
|
| 310 |
// chf of geometric distribution provided by derived accessors.
|
| 311 |
|
| 312 |
template <class RealType, class Policy> |
| 313 |
inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k) |
| 314 |
{ // Probability Density/Mass Function.
|
| 315 |
BOOST_FPU_EXCEPTION_GUARD |
| 316 |
BOOST_MATH_STD_USING // For ADL of math functions.
|
| 317 |
static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)"; |
| 318 |
|
| 319 |
RealType p = dist.success_fraction(); |
| 320 |
RealType result = 0;
|
| 321 |
if(false == geometric_detail::check_dist_and_k( |
| 322 |
function, |
| 323 |
p, |
| 324 |
k, |
| 325 |
&result, Policy())) |
| 326 |
{
|
| 327 |
return result;
|
| 328 |
} |
| 329 |
if (k == 0) |
| 330 |
{
|
| 331 |
return p; // success_fraction |
| 332 |
} |
| 333 |
RealType q = 1 - p; // Inaccurate for small p? |
| 334 |
// So try to avoid inaccuracy for large or small p.
|
| 335 |
// but has little effect > last significant bit.
|
| 336 |
//cout << "p * pow(q, k) " << result << endl; // seems best whatever p
|
| 337 |
//cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl;
|
| 338 |
//if (p < 0.5)
|
| 339 |
//{
|
| 340 |
// result = p * pow(q, k);
|
| 341 |
//}
|
| 342 |
//else
|
| 343 |
//{
|
| 344 |
// result = p * exp(k * log1p(-p));
|
| 345 |
//}
|
| 346 |
result = p * pow(q, k); |
| 347 |
return result;
|
| 348 |
} // geometric_pdf
|
| 349 |
|
| 350 |
template <class RealType, class Policy> |
| 351 |
inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k) |
| 352 |
{ // Cumulative Distribution Function of geometric.
|
| 353 |
static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; |
| 354 |
|
| 355 |
// k argument may be integral, signed, or unsigned, or floating point.
|
| 356 |
// If necessary, it has already been promoted from an integral type.
|
| 357 |
RealType p = dist.success_fraction(); |
| 358 |
// Error check:
|
| 359 |
RealType result = 0;
|
| 360 |
if(false == geometric_detail::check_dist_and_k( |
| 361 |
function, |
| 362 |
p, |
| 363 |
k, |
| 364 |
&result, Policy())) |
| 365 |
{
|
| 366 |
return result;
|
| 367 |
} |
| 368 |
if(k == 0) |
| 369 |
{
|
| 370 |
return p; // success_fraction |
| 371 |
} |
| 372 |
//RealType q = 1 - p; // Bad for small p
|
| 373 |
//RealType probability = 1 - std::pow(q, k+1);
|
| 374 |
|
| 375 |
RealType z = boost::math::log1p(-p, Policy()) * (k + 1);
|
| 376 |
RealType probability = -boost::math::expm1(z, Policy()); |
| 377 |
|
| 378 |
return probability;
|
| 379 |
} // cdf Cumulative Distribution Function geometric.
|
| 380 |
|
| 381 |
template <class RealType, class Policy> |
| 382 |
inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c) |
| 383 |
{ // Complemented Cumulative Distribution Function geometric.
|
| 384 |
BOOST_MATH_STD_USING |
| 385 |
static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; |
| 386 |
// k argument may be integral, signed, or unsigned, or floating point.
|
| 387 |
// If necessary, it has already been promoted from an integral type.
|
| 388 |
RealType const& k = c.param;
|
| 389 |
geometric_distribution<RealType, Policy> const& dist = c.dist;
|
| 390 |
RealType p = dist.success_fraction(); |
| 391 |
// Error check:
|
| 392 |
RealType result = 0;
|
| 393 |
if(false == geometric_detail::check_dist_and_k( |
| 394 |
function, |
| 395 |
p, |
| 396 |
k, |
| 397 |
&result, Policy())) |
| 398 |
{
|
| 399 |
return result;
|
| 400 |
} |
| 401 |
RealType z = boost::math::log1p(-p, Policy()) * (k+1);
|
| 402 |
RealType probability = exp(z); |
| 403 |
return probability;
|
| 404 |
} // cdf Complemented Cumulative Distribution Function geometric.
|
| 405 |
|
| 406 |
template <class RealType, class Policy> |
| 407 |
inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x) |
| 408 |
{ // Quantile, percentile/100 or Percent Point geometric function.
|
| 409 |
// Return the number of expected failures k for a given probability p.
|
| 410 |
|
| 411 |
// Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability.
|
| 412 |
// k argument may be integral, signed, or unsigned, or floating point.
|
| 413 |
|
| 414 |
static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; |
| 415 |
BOOST_MATH_STD_USING // ADL of std functions.
|
| 416 |
|
| 417 |
RealType success_fraction = dist.success_fraction(); |
| 418 |
// Check dist and x.
|
| 419 |
RealType result = 0;
|
| 420 |
if(false == geometric_detail::check_dist_and_prob |
| 421 |
(function, success_fraction, x, &result, Policy())) |
| 422 |
{
|
| 423 |
return result;
|
| 424 |
} |
| 425 |
|
| 426 |
// Special cases.
|
| 427 |
if (x == 1) |
| 428 |
{ // Would need +infinity failures for total confidence.
|
| 429 |
result = policies::raise_overflow_error<RealType>( |
| 430 |
function, |
| 431 |
"Probability argument is 1, which implies infinite failures !", Policy());
|
| 432 |
return result;
|
| 433 |
// usually means return +std::numeric_limits<RealType>::infinity();
|
| 434 |
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
|
| 435 |
} |
| 436 |
if (x == 0) |
| 437 |
{ // No failures are expected if P = 0.
|
| 438 |
return 0; // Total trials will be just dist.successes. |
| 439 |
} |
| 440 |
// if (P <= pow(dist.success_fraction(), 1))
|
| 441 |
if (x <= success_fraction)
|
| 442 |
{ // p <= pdf(dist, 0) == cdf(dist, 0)
|
| 443 |
return 0; |
| 444 |
} |
| 445 |
if (x == 1) |
| 446 |
{
|
| 447 |
return 0; |
| 448 |
} |
| 449 |
|
| 450 |
// log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
|
| 451 |
result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1;
|
| 452 |
// Subtract a few epsilons here too?
|
| 453 |
// to make sure it doesn't slip over, so ceil would be one too many.
|
| 454 |
return result;
|
| 455 |
} // RealType quantile(const geometric_distribution dist, p)
|
| 456 |
|
| 457 |
template <class RealType, class Policy> |
| 458 |
inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c) |
| 459 |
{ // Quantile or Percent Point Binomial function.
|
| 460 |
// Return the number of expected failures k for a given
|
| 461 |
// complement of the probability Q = 1 - P.
|
| 462 |
static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; |
| 463 |
BOOST_MATH_STD_USING |
| 464 |
// Error checks:
|
| 465 |
RealType x = c.param; |
| 466 |
const geometric_distribution<RealType, Policy>& dist = c.dist;
|
| 467 |
RealType success_fraction = dist.success_fraction(); |
| 468 |
RealType result = 0;
|
| 469 |
if(false == geometric_detail::check_dist_and_prob( |
| 470 |
function, |
| 471 |
success_fraction, |
| 472 |
x, |
| 473 |
&result, Policy())) |
| 474 |
{
|
| 475 |
return result;
|
| 476 |
} |
| 477 |
|
| 478 |
// Special cases:
|
| 479 |
if(x == 1) |
| 480 |
{ // There may actually be no answer to this question,
|
| 481 |
// since the probability of zero failures may be non-zero,
|
| 482 |
return 0; // but zero is the best we can do: |
| 483 |
} |
| 484 |
if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
|
| 485 |
{ // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
|
| 486 |
return 0; // |
| 487 |
} |
| 488 |
if(x == 0) |
| 489 |
{ // Probability 1 - Q == 1 so infinite failures to achieve certainty.
|
| 490 |
// Would need +infinity failures for total confidence.
|
| 491 |
result = policies::raise_overflow_error<RealType>( |
| 492 |
function, |
| 493 |
"Probability argument complement is 0, which implies infinite failures !", Policy());
|
| 494 |
return result;
|
| 495 |
// usually means return +std::numeric_limits<RealType>::infinity();
|
| 496 |
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
|
| 497 |
} |
| 498 |
// log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
|
| 499 |
result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1;
|
| 500 |
return result;
|
| 501 |
|
| 502 |
} // quantile complement
|
| 503 |
|
| 504 |
} // namespace math
|
| 505 |
} // namespace boost
|
| 506 |
|
| 507 |
// This include must be at the end, *after* the accessors
|
| 508 |
// for this distribution have been defined, in order to
|
| 509 |
// keep compilers that support two-phase lookup happy.
|
| 510 |
#include <boost/math/distributions/detail/derived_accessors.hpp> |
| 511 |
|
| 512 |
#if defined (BOOST_MSVC)
|
| 513 |
# pragma warning(pop)
|
| 514 |
#endif
|
| 515 |
|
| 516 |
#endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP |