To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / any / include / boost / math / distributions / extreme_value.hpp @ 160:cff480c41f97
History | View | Annotate | Download (10.5 KB)
| 1 |
// Copyright John Maddock 2006.
|
|---|---|
| 2 |
// Use, modification and distribution are subject to the
|
| 3 |
// Boost Software License, Version 1.0. (See accompanying file
|
| 4 |
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
| 5 |
|
| 6 |
#ifndef BOOST_STATS_EXTREME_VALUE_HPP
|
| 7 |
#define BOOST_STATS_EXTREME_VALUE_HPP
|
| 8 |
|
| 9 |
#include <boost/math/distributions/fwd.hpp> |
| 10 |
#include <boost/math/constants/constants.hpp> |
| 11 |
#include <boost/math/special_functions/log1p.hpp> |
| 12 |
#include <boost/math/special_functions/expm1.hpp> |
| 13 |
#include <boost/math/distributions/complement.hpp> |
| 14 |
#include <boost/math/distributions/detail/common_error_handling.hpp> |
| 15 |
#include <boost/config/no_tr1/cmath.hpp> |
| 16 |
|
| 17 |
//
|
| 18 |
// This is the maximum extreme value distribution, see
|
| 19 |
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm
|
| 20 |
// and http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
| 21 |
// Also known as a Fisher-Tippett distribution, a log-Weibull
|
| 22 |
// distribution or a Gumbel distribution.
|
| 23 |
|
| 24 |
#include <utility> |
| 25 |
|
| 26 |
#ifdef BOOST_MSVC
|
| 27 |
# pragma warning(push)
|
| 28 |
# pragma warning(disable: 4702) // unreachable code (return after domain_error throw). |
| 29 |
#endif
|
| 30 |
|
| 31 |
namespace boost{ namespace math{ |
| 32 |
|
| 33 |
namespace detail{
|
| 34 |
//
|
| 35 |
// Error check:
|
| 36 |
//
|
| 37 |
template <class RealType, class Policy> |
| 38 |
inline bool verify_scale_b(const char* function, RealType b, RealType* presult, const Policy& pol) |
| 39 |
{
|
| 40 |
if((b <= 0) || !(boost::math::isfinite)(b)) |
| 41 |
{
|
| 42 |
*presult = policies::raise_domain_error<RealType>( |
| 43 |
function, |
| 44 |
"The scale parameter \"b\" must be finite and > 0, but was: %1%.", b, pol);
|
| 45 |
return false; |
| 46 |
} |
| 47 |
return true; |
| 48 |
} |
| 49 |
|
| 50 |
} // namespace detail
|
| 51 |
|
| 52 |
template <class RealType = double, class Policy = policies::policy<> > |
| 53 |
class extreme_value_distribution |
| 54 |
{
|
| 55 |
public:
|
| 56 |
typedef RealType value_type;
|
| 57 |
typedef Policy policy_type;
|
| 58 |
|
| 59 |
extreme_value_distribution(RealType a = 0, RealType b = 1) |
| 60 |
: m_a(a), m_b(b) |
| 61 |
{
|
| 62 |
RealType err; |
| 63 |
detail::verify_scale_b("boost::math::extreme_value_distribution<%1%>::extreme_value_distribution", b, &err, Policy());
|
| 64 |
detail::check_finite("boost::math::extreme_value_distribution<%1%>::extreme_value_distribution", a, &err, Policy());
|
| 65 |
} // extreme_value_distribution
|
| 66 |
|
| 67 |
RealType location()const { return m_a; } |
| 68 |
RealType scale()const { return m_b; } |
| 69 |
|
| 70 |
private:
|
| 71 |
RealType m_a, m_b; |
| 72 |
}; |
| 73 |
|
| 74 |
typedef extreme_value_distribution<double> extreme_value; |
| 75 |
|
| 76 |
template <class RealType, class Policy> |
| 77 |
inline const std::pair<RealType, RealType> range(const extreme_value_distribution<RealType, Policy>& /*dist*/) |
| 78 |
{ // Range of permissible values for random variable x.
|
| 79 |
using boost::math::tools::max_value;
|
| 80 |
return std::pair<RealType, RealType>(
|
| 81 |
std::numeric_limits<RealType>::has_infinity ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>(), |
| 82 |
std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>()); |
| 83 |
} |
| 84 |
|
| 85 |
template <class RealType, class Policy> |
| 86 |
inline const std::pair<RealType, RealType> support(const extreme_value_distribution<RealType, Policy>& /*dist*/) |
| 87 |
{ // Range of supported values for random variable x.
|
| 88 |
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
| 89 |
using boost::math::tools::max_value;
|
| 90 |
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
|
| 91 |
} |
| 92 |
|
| 93 |
template <class RealType, class Policy> |
| 94 |
inline RealType pdf(const extreme_value_distribution<RealType, Policy>& dist, const RealType& x) |
| 95 |
{
|
| 96 |
BOOST_MATH_STD_USING // for ADL of std functions
|
| 97 |
|
| 98 |
static const char* function = "boost::math::pdf(const extreme_value_distribution<%1%>&, %1%)"; |
| 99 |
|
| 100 |
RealType a = dist.location(); |
| 101 |
RealType b = dist.scale(); |
| 102 |
RealType result = 0;
|
| 103 |
if(0 == detail::verify_scale_b(function, b, &result, Policy())) |
| 104 |
return result;
|
| 105 |
if(0 == detail::check_finite(function, a, &result, Policy())) |
| 106 |
return result;
|
| 107 |
if((boost::math::isinf)(x))
|
| 108 |
return 0.0f; |
| 109 |
if(0 == detail::check_x(function, x, &result, Policy())) |
| 110 |
return result;
|
| 111 |
RealType e = (a - x) / b; |
| 112 |
if(e < tools::log_max_value<RealType>())
|
| 113 |
result = exp(e) * exp(-exp(e)) / b; |
| 114 |
// else.... result *must* be zero since exp(e) is infinite...
|
| 115 |
return result;
|
| 116 |
} // pdf
|
| 117 |
|
| 118 |
template <class RealType, class Policy> |
| 119 |
inline RealType cdf(const extreme_value_distribution<RealType, Policy>& dist, const RealType& x) |
| 120 |
{
|
| 121 |
BOOST_MATH_STD_USING // for ADL of std functions
|
| 122 |
|
| 123 |
static const char* function = "boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)"; |
| 124 |
|
| 125 |
if((boost::math::isinf)(x))
|
| 126 |
return x < 0 ? 0.0f : 1.0f; |
| 127 |
RealType a = dist.location(); |
| 128 |
RealType b = dist.scale(); |
| 129 |
RealType result = 0;
|
| 130 |
if(0 == detail::verify_scale_b(function, b, &result, Policy())) |
| 131 |
return result;
|
| 132 |
if(0 == detail::check_finite(function, a, &result, Policy())) |
| 133 |
return result;
|
| 134 |
if(0 == detail::check_finite(function, a, &result, Policy())) |
| 135 |
return result;
|
| 136 |
if(0 == detail::check_x("boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)", x, &result, Policy())) |
| 137 |
return result;
|
| 138 |
|
| 139 |
result = exp(-exp((a-x)/b)); |
| 140 |
|
| 141 |
return result;
|
| 142 |
} // cdf
|
| 143 |
|
| 144 |
template <class RealType, class Policy> |
| 145 |
RealType quantile(const extreme_value_distribution<RealType, Policy>& dist, const RealType& p) |
| 146 |
{
|
| 147 |
BOOST_MATH_STD_USING // for ADL of std functions
|
| 148 |
|
| 149 |
static const char* function = "boost::math::quantile(const extreme_value_distribution<%1%>&, %1%)"; |
| 150 |
|
| 151 |
RealType a = dist.location(); |
| 152 |
RealType b = dist.scale(); |
| 153 |
RealType result = 0;
|
| 154 |
if(0 == detail::verify_scale_b(function, b, &result, Policy())) |
| 155 |
return result;
|
| 156 |
if(0 == detail::check_finite(function, a, &result, Policy())) |
| 157 |
return result;
|
| 158 |
if(0 == detail::check_probability(function, p, &result, Policy())) |
| 159 |
return result;
|
| 160 |
|
| 161 |
if(p == 0) |
| 162 |
return -policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 163 |
if(p == 1) |
| 164 |
return policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 165 |
|
| 166 |
result = a - log(-log(p)) * b; |
| 167 |
|
| 168 |
return result;
|
| 169 |
} // quantile
|
| 170 |
|
| 171 |
template <class RealType, class Policy> |
| 172 |
inline RealType cdf(const complemented2_type<extreme_value_distribution<RealType, Policy>, RealType>& c) |
| 173 |
{
|
| 174 |
BOOST_MATH_STD_USING // for ADL of std functions
|
| 175 |
|
| 176 |
static const char* function = "boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)"; |
| 177 |
|
| 178 |
if((boost::math::isinf)(c.param))
|
| 179 |
return c.param < 0 ? 1.0f : 0.0f; |
| 180 |
RealType a = c.dist.location(); |
| 181 |
RealType b = c.dist.scale(); |
| 182 |
RealType result = 0;
|
| 183 |
if(0 == detail::verify_scale_b(function, b, &result, Policy())) |
| 184 |
return result;
|
| 185 |
if(0 == detail::check_finite(function, a, &result, Policy())) |
| 186 |
return result;
|
| 187 |
if(0 == detail::check_x(function, c.param, &result, Policy())) |
| 188 |
return result;
|
| 189 |
|
| 190 |
result = -boost::math::expm1(-exp((a-c.param)/b), Policy()); |
| 191 |
|
| 192 |
return result;
|
| 193 |
} |
| 194 |
|
| 195 |
template <class RealType, class Policy> |
| 196 |
RealType quantile(const complemented2_type<extreme_value_distribution<RealType, Policy>, RealType>& c)
|
| 197 |
{
|
| 198 |
BOOST_MATH_STD_USING // for ADL of std functions
|
| 199 |
|
| 200 |
static const char* function = "boost::math::quantile(const extreme_value_distribution<%1%>&, %1%)"; |
| 201 |
|
| 202 |
RealType a = c.dist.location(); |
| 203 |
RealType b = c.dist.scale(); |
| 204 |
RealType q = c.param; |
| 205 |
RealType result = 0;
|
| 206 |
if(0 == detail::verify_scale_b(function, b, &result, Policy())) |
| 207 |
return result;
|
| 208 |
if(0 == detail::check_finite(function, a, &result, Policy())) |
| 209 |
return result;
|
| 210 |
if(0 == detail::check_probability(function, q, &result, Policy())) |
| 211 |
return result;
|
| 212 |
|
| 213 |
if(q == 0) |
| 214 |
return policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 215 |
if(q == 1) |
| 216 |
return -policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 217 |
|
| 218 |
result = a - log(-boost::math::log1p(-q, Policy())) * b; |
| 219 |
|
| 220 |
return result;
|
| 221 |
} |
| 222 |
|
| 223 |
template <class RealType, class Policy> |
| 224 |
inline RealType mean(const extreme_value_distribution<RealType, Policy>& dist) |
| 225 |
{
|
| 226 |
RealType a = dist.location(); |
| 227 |
RealType b = dist.scale(); |
| 228 |
RealType result = 0;
|
| 229 |
if(0 == detail::verify_scale_b("boost::math::mean(const extreme_value_distribution<%1%>&)", b, &result, Policy())) |
| 230 |
return result;
|
| 231 |
if (0 == detail::check_finite("boost::math::mean(const extreme_value_distribution<%1%>&)", a, &result, Policy())) |
| 232 |
return result;
|
| 233 |
return a + constants::euler<RealType>() * b;
|
| 234 |
} |
| 235 |
|
| 236 |
template <class RealType, class Policy> |
| 237 |
inline RealType standard_deviation(const extreme_value_distribution<RealType, Policy>& dist) |
| 238 |
{
|
| 239 |
BOOST_MATH_STD_USING // for ADL of std functions.
|
| 240 |
|
| 241 |
RealType b = dist.scale(); |
| 242 |
RealType result = 0;
|
| 243 |
if(0 == detail::verify_scale_b("boost::math::standard_deviation(const extreme_value_distribution<%1%>&)", b, &result, Policy())) |
| 244 |
return result;
|
| 245 |
if(0 == detail::check_finite("boost::math::standard_deviation(const extreme_value_distribution<%1%>&)", dist.location(), &result, Policy())) |
| 246 |
return result;
|
| 247 |
return constants::pi<RealType>() * b / sqrt(static_cast<RealType>(6)); |
| 248 |
} |
| 249 |
|
| 250 |
template <class RealType, class Policy> |
| 251 |
inline RealType mode(const extreme_value_distribution<RealType, Policy>& dist) |
| 252 |
{
|
| 253 |
return dist.location();
|
| 254 |
} |
| 255 |
|
| 256 |
template <class RealType, class Policy> |
| 257 |
inline RealType median(const extreme_value_distribution<RealType, Policy>& dist) |
| 258 |
{
|
| 259 |
using constants::ln_ln_two;
|
| 260 |
return dist.location() - dist.scale() * ln_ln_two<RealType>();
|
| 261 |
} |
| 262 |
|
| 263 |
template <class RealType, class Policy> |
| 264 |
inline RealType skewness(const extreme_value_distribution<RealType, Policy>& /*dist*/) |
| 265 |
{
|
| 266 |
//
|
| 267 |
// This is 12 * sqrt(6) * zeta(3) / pi^3:
|
| 268 |
// See http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
| 269 |
//
|
| 270 |
return static_cast<RealType>(1.1395470994046486574927930193898461120875997958366L); |
| 271 |
} |
| 272 |
|
| 273 |
template <class RealType, class Policy> |
| 274 |
inline RealType kurtosis(const extreme_value_distribution<RealType, Policy>& /*dist*/) |
| 275 |
{
|
| 276 |
// See http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
| 277 |
return RealType(27) / 5; |
| 278 |
} |
| 279 |
|
| 280 |
template <class RealType, class Policy> |
| 281 |
inline RealType kurtosis_excess(const extreme_value_distribution<RealType, Policy>& /*dist*/) |
| 282 |
{
|
| 283 |
// See http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
| 284 |
return RealType(12) / 5; |
| 285 |
} |
| 286 |
|
| 287 |
|
| 288 |
} // namespace math
|
| 289 |
} // namespace boost
|
| 290 |
|
| 291 |
#ifdef BOOST_MSVC
|
| 292 |
# pragma warning(pop)
|
| 293 |
#endif
|
| 294 |
|
| 295 |
// This include must be at the end, *after* the accessors
|
| 296 |
// for this distribution have been defined, in order to
|
| 297 |
// keep compilers that support two-phase lookup happy.
|
| 298 |
#include <boost/math/distributions/detail/derived_accessors.hpp> |
| 299 |
|
| 300 |
#endif // BOOST_STATS_EXTREME_VALUE_HPP |