To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / any / include / boost / math / distributions / detail / inv_discrete_quantile.hpp @ 160:cff480c41f97
History | View | Annotate | Download (16.3 KB)
| 1 |
// Copyright John Maddock 2007.
|
|---|---|
| 2 |
// Use, modification and distribution are subject to the
|
| 3 |
// Boost Software License, Version 1.0. (See accompanying file
|
| 4 |
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
| 5 |
|
| 6 |
#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
|
| 7 |
#define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
|
| 8 |
|
| 9 |
#include <algorithm> |
| 10 |
|
| 11 |
namespace boost{ namespace math{ namespace detail{ |
| 12 |
|
| 13 |
//
|
| 14 |
// Functor for root finding algorithm:
|
| 15 |
//
|
| 16 |
template <class Dist> |
| 17 |
struct distribution_quantile_finder
|
| 18 |
{
|
| 19 |
typedef typename Dist::value_type value_type; |
| 20 |
typedef typename Dist::policy_type policy_type; |
| 21 |
|
| 22 |
distribution_quantile_finder(const Dist d, value_type p, bool c) |
| 23 |
: dist(d), target(p), comp(c) {}
|
| 24 |
|
| 25 |
value_type operator()(value_type const& x) |
| 26 |
{
|
| 27 |
return comp ? value_type(target - cdf(complement(dist, x))) : value_type(cdf(dist, x) - target);
|
| 28 |
} |
| 29 |
|
| 30 |
private:
|
| 31 |
Dist dist; |
| 32 |
value_type target; |
| 33 |
bool comp;
|
| 34 |
}; |
| 35 |
//
|
| 36 |
// The purpose of adjust_bounds, is to toggle the last bit of the
|
| 37 |
// range so that both ends round to the same integer, if possible.
|
| 38 |
// If they do both round the same then we terminate the search
|
| 39 |
// for the root *very* quickly when finding an integer result.
|
| 40 |
// At the point that this function is called we know that "a" is
|
| 41 |
// below the root and "b" above it, so this change can not result
|
| 42 |
// in the root no longer being bracketed.
|
| 43 |
//
|
| 44 |
template <class Real, class Tol> |
| 45 |
void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){} |
| 46 |
|
| 47 |
template <class Real> |
| 48 |
void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */) |
| 49 |
{
|
| 50 |
BOOST_MATH_STD_USING |
| 51 |
b -= tools::epsilon<Real>() * b; |
| 52 |
} |
| 53 |
|
| 54 |
template <class Real> |
| 55 |
void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */) |
| 56 |
{
|
| 57 |
BOOST_MATH_STD_USING |
| 58 |
a += tools::epsilon<Real>() * a; |
| 59 |
} |
| 60 |
|
| 61 |
template <class Real> |
| 62 |
void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */) |
| 63 |
{
|
| 64 |
BOOST_MATH_STD_USING |
| 65 |
a += tools::epsilon<Real>() * a; |
| 66 |
b -= tools::epsilon<Real>() * b; |
| 67 |
} |
| 68 |
//
|
| 69 |
// This is where all the work is done:
|
| 70 |
//
|
| 71 |
template <class Dist, class Tolerance> |
| 72 |
typename Dist::value_type
|
| 73 |
do_inverse_discrete_quantile( |
| 74 |
const Dist& dist,
|
| 75 |
const typename Dist::value_type& p, |
| 76 |
bool comp,
|
| 77 |
typename Dist::value_type guess,
|
| 78 |
const typename Dist::value_type& multiplier, |
| 79 |
typename Dist::value_type adder,
|
| 80 |
const Tolerance& tol,
|
| 81 |
boost::uintmax_t& max_iter) |
| 82 |
{
|
| 83 |
typedef typename Dist::value_type value_type; |
| 84 |
typedef typename Dist::policy_type policy_type; |
| 85 |
|
| 86 |
static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>"; |
| 87 |
|
| 88 |
BOOST_MATH_STD_USING |
| 89 |
|
| 90 |
distribution_quantile_finder<Dist> f(dist, p, comp); |
| 91 |
//
|
| 92 |
// Max bounds of the distribution:
|
| 93 |
//
|
| 94 |
value_type min_bound, max_bound; |
| 95 |
boost::math::tie(min_bound, max_bound) = support(dist); |
| 96 |
|
| 97 |
if(guess > max_bound)
|
| 98 |
guess = max_bound; |
| 99 |
if(guess < min_bound)
|
| 100 |
guess = min_bound; |
| 101 |
|
| 102 |
value_type fa = f(guess); |
| 103 |
boost::uintmax_t count = max_iter - 1;
|
| 104 |
value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used |
| 105 |
|
| 106 |
if(fa == 0) |
| 107 |
return guess;
|
| 108 |
|
| 109 |
//
|
| 110 |
// For small expected results, just use a linear search:
|
| 111 |
//
|
| 112 |
if(guess < 10) |
| 113 |
{
|
| 114 |
b = a; |
| 115 |
while((a < 10) && (fa * fb >= 0)) |
| 116 |
{
|
| 117 |
if(fb <= 0) |
| 118 |
{
|
| 119 |
a = b; |
| 120 |
b = a + 1;
|
| 121 |
if(b > max_bound)
|
| 122 |
b = max_bound; |
| 123 |
fb = f(b); |
| 124 |
--count; |
| 125 |
if(fb == 0) |
| 126 |
return b;
|
| 127 |
if(a == b)
|
| 128 |
return b; // can't go any higher! |
| 129 |
} |
| 130 |
else
|
| 131 |
{
|
| 132 |
b = a; |
| 133 |
a = (std::max)(value_type(b - 1), value_type(0)); |
| 134 |
if(a < min_bound)
|
| 135 |
a = min_bound; |
| 136 |
fa = f(a); |
| 137 |
--count; |
| 138 |
if(fa == 0) |
| 139 |
return a;
|
| 140 |
if(a == b)
|
| 141 |
return a; // We can't go any lower than this! |
| 142 |
} |
| 143 |
} |
| 144 |
} |
| 145 |
//
|
| 146 |
// Try and bracket using a couple of additions first,
|
| 147 |
// we're assuming that "guess" is likely to be accurate
|
| 148 |
// to the nearest int or so:
|
| 149 |
//
|
| 150 |
else if(adder != 0) |
| 151 |
{
|
| 152 |
//
|
| 153 |
// If we're looking for a large result, then bump "adder" up
|
| 154 |
// by a bit to increase our chances of bracketing the root:
|
| 155 |
//
|
| 156 |
//adder = (std::max)(adder, 0.001f * guess);
|
| 157 |
if(fa < 0) |
| 158 |
{
|
| 159 |
b = a + adder; |
| 160 |
if(b > max_bound)
|
| 161 |
b = max_bound; |
| 162 |
} |
| 163 |
else
|
| 164 |
{
|
| 165 |
b = (std::max)(value_type(a - adder), value_type(0));
|
| 166 |
if(b < min_bound)
|
| 167 |
b = min_bound; |
| 168 |
} |
| 169 |
fb = f(b); |
| 170 |
--count; |
| 171 |
if(fb == 0) |
| 172 |
return b;
|
| 173 |
if(count && (fa * fb >= 0)) |
| 174 |
{
|
| 175 |
//
|
| 176 |
// We didn't bracket the root, try
|
| 177 |
// once more:
|
| 178 |
//
|
| 179 |
a = b; |
| 180 |
fa = fb; |
| 181 |
if(fa < 0) |
| 182 |
{
|
| 183 |
b = a + adder; |
| 184 |
if(b > max_bound)
|
| 185 |
b = max_bound; |
| 186 |
} |
| 187 |
else
|
| 188 |
{
|
| 189 |
b = (std::max)(value_type(a - adder), value_type(0));
|
| 190 |
if(b < min_bound)
|
| 191 |
b = min_bound; |
| 192 |
} |
| 193 |
fb = f(b); |
| 194 |
--count; |
| 195 |
} |
| 196 |
if(a > b)
|
| 197 |
{
|
| 198 |
using std::swap;
|
| 199 |
swap(a, b); |
| 200 |
swap(fa, fb); |
| 201 |
} |
| 202 |
} |
| 203 |
//
|
| 204 |
// If the root hasn't been bracketed yet, try again
|
| 205 |
// using the multiplier this time:
|
| 206 |
//
|
| 207 |
if((boost::math::sign)(fb) == (boost::math::sign)(fa))
|
| 208 |
{
|
| 209 |
if(fa < 0) |
| 210 |
{
|
| 211 |
//
|
| 212 |
// Zero is to the right of x2, so walk upwards
|
| 213 |
// until we find it:
|
| 214 |
//
|
| 215 |
while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
|
| 216 |
{
|
| 217 |
if(count == 0) |
| 218 |
return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type()); |
| 219 |
a = b; |
| 220 |
fa = fb; |
| 221 |
b *= multiplier; |
| 222 |
if(b > max_bound)
|
| 223 |
b = max_bound; |
| 224 |
fb = f(b); |
| 225 |
--count; |
| 226 |
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
| 227 |
} |
| 228 |
} |
| 229 |
else
|
| 230 |
{
|
| 231 |
//
|
| 232 |
// Zero is to the left of a, so walk downwards
|
| 233 |
// until we find it:
|
| 234 |
//
|
| 235 |
while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
|
| 236 |
{
|
| 237 |
if(fabs(a) < tools::min_value<value_type>())
|
| 238 |
{
|
| 239 |
// Escape route just in case the answer is zero!
|
| 240 |
max_iter -= count; |
| 241 |
max_iter += 1;
|
| 242 |
return 0; |
| 243 |
} |
| 244 |
if(count == 0) |
| 245 |
return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type()); |
| 246 |
b = a; |
| 247 |
fb = fa; |
| 248 |
a /= multiplier; |
| 249 |
if(a < min_bound)
|
| 250 |
a = min_bound; |
| 251 |
fa = f(a); |
| 252 |
--count; |
| 253 |
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
| 254 |
} |
| 255 |
} |
| 256 |
} |
| 257 |
max_iter -= count; |
| 258 |
if(fa == 0) |
| 259 |
return a;
|
| 260 |
if(fb == 0) |
| 261 |
return b;
|
| 262 |
if(a == b)
|
| 263 |
return b; // Ran out of bounds trying to bracket - there is no answer! |
| 264 |
//
|
| 265 |
// Adjust bounds so that if we're looking for an integer
|
| 266 |
// result, then both ends round the same way:
|
| 267 |
//
|
| 268 |
adjust_bounds(a, b, tol); |
| 269 |
//
|
| 270 |
// We don't want zero or denorm lower bounds:
|
| 271 |
//
|
| 272 |
if(a < tools::min_value<value_type>())
|
| 273 |
a = tools::min_value<value_type>(); |
| 274 |
//
|
| 275 |
// Go ahead and find the root:
|
| 276 |
//
|
| 277 |
std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type()); |
| 278 |
max_iter += count; |
| 279 |
BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count); |
| 280 |
return (r.first + r.second) / 2; |
| 281 |
} |
| 282 |
//
|
| 283 |
// Some special routine for rounding up and down:
|
| 284 |
// We want to check and see if we are very close to an integer, and if so test to see if
|
| 285 |
// that integer is an exact root of the cdf. We do this because our root finder only
|
| 286 |
// guarantees to find *a root*, and there can sometimes be many consecutive floating
|
| 287 |
// point values which are all roots. This is especially true if the target probability
|
| 288 |
// is very close 1.
|
| 289 |
//
|
| 290 |
template <class Dist> |
| 291 |
inline typename Dist::value_type round_to_floor(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c) |
| 292 |
{
|
| 293 |
BOOST_MATH_STD_USING |
| 294 |
typename Dist::value_type cc = ceil(result);
|
| 295 |
typename Dist::value_type pp = cc <= support(d).second ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 1; |
| 296 |
if(pp == p)
|
| 297 |
result = cc; |
| 298 |
else
|
| 299 |
result = floor(result); |
| 300 |
//
|
| 301 |
// Now find the smallest integer <= result for which we get an exact root:
|
| 302 |
//
|
| 303 |
while(result != 0) |
| 304 |
{
|
| 305 |
cc = result - 1;
|
| 306 |
if(cc < support(d).first)
|
| 307 |
break;
|
| 308 |
pp = c ? cdf(complement(d, cc)) : cdf(d, cc); |
| 309 |
if(pp == p)
|
| 310 |
result = cc; |
| 311 |
else if(c ? pp > p : pp < p) |
| 312 |
break;
|
| 313 |
result -= 1;
|
| 314 |
} |
| 315 |
|
| 316 |
return result;
|
| 317 |
} |
| 318 |
|
| 319 |
#ifdef BOOST_MSVC
|
| 320 |
#pragma warning(push)
|
| 321 |
#pragma warning(disable:4127) |
| 322 |
#endif
|
| 323 |
|
| 324 |
template <class Dist> |
| 325 |
inline typename Dist::value_type round_to_ceil(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c) |
| 326 |
{
|
| 327 |
BOOST_MATH_STD_USING |
| 328 |
typename Dist::value_type cc = floor(result);
|
| 329 |
typename Dist::value_type pp = cc >= support(d).first ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 0; |
| 330 |
if(pp == p)
|
| 331 |
result = cc; |
| 332 |
else
|
| 333 |
result = ceil(result); |
| 334 |
//
|
| 335 |
// Now find the largest integer >= result for which we get an exact root:
|
| 336 |
//
|
| 337 |
while(true) |
| 338 |
{
|
| 339 |
cc = result + 1;
|
| 340 |
if(cc > support(d).second)
|
| 341 |
break;
|
| 342 |
pp = c ? cdf(complement(d, cc)) : cdf(d, cc); |
| 343 |
if(pp == p)
|
| 344 |
result = cc; |
| 345 |
else if(c ? pp < p : pp > p) |
| 346 |
break;
|
| 347 |
result += 1;
|
| 348 |
} |
| 349 |
|
| 350 |
return result;
|
| 351 |
} |
| 352 |
|
| 353 |
#ifdef BOOST_MSVC
|
| 354 |
#pragma warning(pop)
|
| 355 |
#endif
|
| 356 |
//
|
| 357 |
// Now finally are the public API functions.
|
| 358 |
// There is one overload for each policy,
|
| 359 |
// each one is responsible for selecting the correct
|
| 360 |
// termination condition, and rounding the result
|
| 361 |
// to an int where required.
|
| 362 |
//
|
| 363 |
template <class Dist> |
| 364 |
inline typename Dist::value_type |
| 365 |
inverse_discrete_quantile( |
| 366 |
const Dist& dist,
|
| 367 |
typename Dist::value_type p,
|
| 368 |
bool c,
|
| 369 |
const typename Dist::value_type& guess, |
| 370 |
const typename Dist::value_type& multiplier, |
| 371 |
const typename Dist::value_type& adder, |
| 372 |
const policies::discrete_quantile<policies::real>&,
|
| 373 |
boost::uintmax_t& max_iter) |
| 374 |
{
|
| 375 |
if(p > 0.5) |
| 376 |
{
|
| 377 |
p = 1 - p;
|
| 378 |
c = !c; |
| 379 |
} |
| 380 |
typename Dist::value_type pp = c ? 1 - p : p; |
| 381 |
if(pp <= pdf(dist, 0)) |
| 382 |
return 0; |
| 383 |
return do_inverse_discrete_quantile(
|
| 384 |
dist, |
| 385 |
p, |
| 386 |
c, |
| 387 |
guess, |
| 388 |
multiplier, |
| 389 |
adder, |
| 390 |
tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()), |
| 391 |
max_iter); |
| 392 |
} |
| 393 |
|
| 394 |
template <class Dist> |
| 395 |
inline typename Dist::value_type |
| 396 |
inverse_discrete_quantile( |
| 397 |
const Dist& dist,
|
| 398 |
const typename Dist::value_type& p, |
| 399 |
bool c,
|
| 400 |
const typename Dist::value_type& guess, |
| 401 |
const typename Dist::value_type& multiplier, |
| 402 |
const typename Dist::value_type& adder, |
| 403 |
const policies::discrete_quantile<policies::integer_round_outwards>&,
|
| 404 |
boost::uintmax_t& max_iter) |
| 405 |
{
|
| 406 |
typedef typename Dist::value_type value_type; |
| 407 |
BOOST_MATH_STD_USING |
| 408 |
typename Dist::value_type pp = c ? 1 - p : p; |
| 409 |
if(pp <= pdf(dist, 0)) |
| 410 |
return 0; |
| 411 |
//
|
| 412 |
// What happens next depends on whether we're looking for an
|
| 413 |
// upper or lower quantile:
|
| 414 |
//
|
| 415 |
if(pp < 0.5f) |
| 416 |
return round_to_floor(dist, do_inverse_discrete_quantile(
|
| 417 |
dist, |
| 418 |
p, |
| 419 |
c, |
| 420 |
(guess < 1 ? value_type(1) : (value_type)floor(guess)), |
| 421 |
multiplier, |
| 422 |
adder, |
| 423 |
tools::equal_floor(), |
| 424 |
max_iter), p, c); |
| 425 |
// else:
|
| 426 |
return round_to_ceil(dist, do_inverse_discrete_quantile(
|
| 427 |
dist, |
| 428 |
p, |
| 429 |
c, |
| 430 |
(value_type)ceil(guess), |
| 431 |
multiplier, |
| 432 |
adder, |
| 433 |
tools::equal_ceil(), |
| 434 |
max_iter), p, c); |
| 435 |
} |
| 436 |
|
| 437 |
template <class Dist> |
| 438 |
inline typename Dist::value_type |
| 439 |
inverse_discrete_quantile( |
| 440 |
const Dist& dist,
|
| 441 |
const typename Dist::value_type& p, |
| 442 |
bool c,
|
| 443 |
const typename Dist::value_type& guess, |
| 444 |
const typename Dist::value_type& multiplier, |
| 445 |
const typename Dist::value_type& adder, |
| 446 |
const policies::discrete_quantile<policies::integer_round_inwards>&,
|
| 447 |
boost::uintmax_t& max_iter) |
| 448 |
{
|
| 449 |
typedef typename Dist::value_type value_type; |
| 450 |
BOOST_MATH_STD_USING |
| 451 |
typename Dist::value_type pp = c ? 1 - p : p; |
| 452 |
if(pp <= pdf(dist, 0)) |
| 453 |
return 0; |
| 454 |
//
|
| 455 |
// What happens next depends on whether we're looking for an
|
| 456 |
// upper or lower quantile:
|
| 457 |
//
|
| 458 |
if(pp < 0.5f) |
| 459 |
return round_to_ceil(dist, do_inverse_discrete_quantile(
|
| 460 |
dist, |
| 461 |
p, |
| 462 |
c, |
| 463 |
ceil(guess), |
| 464 |
multiplier, |
| 465 |
adder, |
| 466 |
tools::equal_ceil(), |
| 467 |
max_iter), p, c); |
| 468 |
// else:
|
| 469 |
return round_to_floor(dist, do_inverse_discrete_quantile(
|
| 470 |
dist, |
| 471 |
p, |
| 472 |
c, |
| 473 |
(guess < 1 ? value_type(1) : floor(guess)), |
| 474 |
multiplier, |
| 475 |
adder, |
| 476 |
tools::equal_floor(), |
| 477 |
max_iter), p, c); |
| 478 |
} |
| 479 |
|
| 480 |
template <class Dist> |
| 481 |
inline typename Dist::value_type |
| 482 |
inverse_discrete_quantile( |
| 483 |
const Dist& dist,
|
| 484 |
const typename Dist::value_type& p, |
| 485 |
bool c,
|
| 486 |
const typename Dist::value_type& guess, |
| 487 |
const typename Dist::value_type& multiplier, |
| 488 |
const typename Dist::value_type& adder, |
| 489 |
const policies::discrete_quantile<policies::integer_round_down>&,
|
| 490 |
boost::uintmax_t& max_iter) |
| 491 |
{
|
| 492 |
typedef typename Dist::value_type value_type; |
| 493 |
BOOST_MATH_STD_USING |
| 494 |
typename Dist::value_type pp = c ? 1 - p : p; |
| 495 |
if(pp <= pdf(dist, 0)) |
| 496 |
return 0; |
| 497 |
return round_to_floor(dist, do_inverse_discrete_quantile(
|
| 498 |
dist, |
| 499 |
p, |
| 500 |
c, |
| 501 |
(guess < 1 ? value_type(1) : floor(guess)), |
| 502 |
multiplier, |
| 503 |
adder, |
| 504 |
tools::equal_floor(), |
| 505 |
max_iter), p, c); |
| 506 |
} |
| 507 |
|
| 508 |
template <class Dist> |
| 509 |
inline typename Dist::value_type |
| 510 |
inverse_discrete_quantile( |
| 511 |
const Dist& dist,
|
| 512 |
const typename Dist::value_type& p, |
| 513 |
bool c,
|
| 514 |
const typename Dist::value_type& guess, |
| 515 |
const typename Dist::value_type& multiplier, |
| 516 |
const typename Dist::value_type& adder, |
| 517 |
const policies::discrete_quantile<policies::integer_round_up>&,
|
| 518 |
boost::uintmax_t& max_iter) |
| 519 |
{
|
| 520 |
BOOST_MATH_STD_USING |
| 521 |
typename Dist::value_type pp = c ? 1 - p : p; |
| 522 |
if(pp <= pdf(dist, 0)) |
| 523 |
return 0; |
| 524 |
return round_to_ceil(dist, do_inverse_discrete_quantile(
|
| 525 |
dist, |
| 526 |
p, |
| 527 |
c, |
| 528 |
ceil(guess), |
| 529 |
multiplier, |
| 530 |
adder, |
| 531 |
tools::equal_ceil(), |
| 532 |
max_iter), p, c); |
| 533 |
} |
| 534 |
|
| 535 |
template <class Dist> |
| 536 |
inline typename Dist::value_type |
| 537 |
inverse_discrete_quantile( |
| 538 |
const Dist& dist,
|
| 539 |
const typename Dist::value_type& p, |
| 540 |
bool c,
|
| 541 |
const typename Dist::value_type& guess, |
| 542 |
const typename Dist::value_type& multiplier, |
| 543 |
const typename Dist::value_type& adder, |
| 544 |
const policies::discrete_quantile<policies::integer_round_nearest>&,
|
| 545 |
boost::uintmax_t& max_iter) |
| 546 |
{
|
| 547 |
typedef typename Dist::value_type value_type; |
| 548 |
BOOST_MATH_STD_USING |
| 549 |
typename Dist::value_type pp = c ? 1 - p : p; |
| 550 |
if(pp <= pdf(dist, 0)) |
| 551 |
return 0; |
| 552 |
//
|
| 553 |
// Note that we adjust the guess to the nearest half-integer:
|
| 554 |
// this increase the chances that we will bracket the root
|
| 555 |
// with two results that both round to the same integer quickly.
|
| 556 |
//
|
| 557 |
return round_to_floor(dist, do_inverse_discrete_quantile(
|
| 558 |
dist, |
| 559 |
p, |
| 560 |
c, |
| 561 |
(guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f), |
| 562 |
multiplier, |
| 563 |
adder, |
| 564 |
tools::equal_nearest_integer(), |
| 565 |
max_iter) + 0.5f, p, c); |
| 566 |
} |
| 567 |
|
| 568 |
}}} // namespaces
|
| 569 |
|
| 570 |
#endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE |
| 571 |
|